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ABSTRACT

Results and methods are given for a theoretical study of the behavior
of a moored construction-type barge and that of a load, lowered by means of
a line from the barge, in irregular seas in deep water. The mooring system
considered is a conventional line-and-anchor type, with both bow and stern
moorings. Load-lowering through the hull as well as by means of a boom having
variable azimuth angle is considered.

Equations of motion of the system for sinusoidal waves of arbitrary length
and direction are formulated for six degrees of freedom, and take into account
both hydrostatic and hydrodynamic effects. Following the evaluation of the
excitation functions and the coefficients in the equations (based on the particular
barge under study), sinusoidal solutions of these equations are obtained for each
of the six barge motions (surge, heave, pitch, sway, roll, and yaw), as well
as for the three rectangular components of the load displacement vector, the
vertical component of the load acceleration and the added dynamic tension in the
lowering line. In addition, solutions are obtained for the forced in the mooring
cables and the horizontal components of the force and the yawing moment induced
by the mooring system on the barge.

The irregular sea model employed is the directional Neumann spectrum,
which introduces an element of randomness into the study, in particular, the
quasi-stationary Gaussian vector-stochastic-process model. Regarding the barge
heading as fixed, a discrete set of seventy-two cases of such an irregular sea are
considered. These consist of three wind speeds corresponding to Sea States 3, 4,
and 5, together with twenty-four wind directions.

For each of the sea-state conditions, the root-mean-square (r. m. s.) values
of the fluctuating barge motions and of the fluctuating load and line variables are
computed, twenty-four possible boom-azimuth angles measured, from the bow,
being considered. Optimum values of the boom angle, which minimize either the
r. m. s. value of a component of the load displacement, the vertical load acceler-
ation, or lowering-line tension, are identified and found to be nearly independent
of the wind speed and barge heading. The resulting minimum-attainable r. m. s.
values of these quantities are given for each barge heading. For the case in which
the load is center-lowered through the hull, the corresponding root-mean-square
values are given for each bargc heading relative to the predominant wind direction.
The use of the r. m. s. values for the determination of the probability of any motion
exceeding any specified value is illustrated by examples.



Examples of energy spectra for the individual barge motions are presented

and interpreted in terms of characteristic features visible on graphical records
of the motion time histories. Examples of cross-spectra, relating pairs of barge
motions, are presented and interpreted in terms of tendencies in their phase re-
lationship and the characteristics of the barge responses to the seaway. Phase
relationships between the barge motions are further investigated by means of the
concepts of instantaneous phases and amplitudes; the nature of these random
quantities is described by giving their probability distributions. It is shown how
the expected phase difference between any two barge motions occuring in a random
seaway may be determined for each of the various barge headings relative to the
wind. By employing a table of random numbers and representing the individual
barge motions as linear combinations of standard random variables, random samples
are generated and presented as examples of typical values for tle barge motions which
might be expected to be seen at a randomly-selected instant.

Illustrative examples show that in a State 5 Sea, heaving and swaying attain
their maximum root-mean-square values of approximately 1. 7 and 1. 8 feet
respectively, for cross-wind barge headings, as contrasted with approximately
1. 25 feet and 0. 8 feet, respectively, for down-wind headings. Interpreted in
terms of the Gaussian probability distribution, these r. m. s. values imply, e.g.,
that the instantaneous absolute value of fhe heaving motion for a down-wind
heading in a State 5 Sea would exceed 0. 6 feet approximately 62% of the time.
for a center-lowered load, the r. m. s. valued (which are such that they are
exceeded in absolute value approximately 32% of the time) of the vertical and the
port-starboard load displacement components in a State 5 Sea reach approxi-
mately 1. 9 feet for cross-wind barge headings, as contrasted with approximately 1. 2
feet, for up-or down-wind barge headings. In a State 3 Sea the corresponding
r. m. s. values are approximately 0.33 feet and 0.16 feet. On the other hand,
the vertical load acceleration has an r. m. s. valued of approximately 1. 15 feet/ secZ
for cross-wind headings in a State 5 Sea, as contrasted with 0.60 feet/ secZ for
down-wind headings. For comparison, the corresponding figures are 0. 35 and
0.15 in a State 3 Sea. For the hypothetical case of a 200-ton load lowered in a
State 5 Sea with a cross-wind barge heading, the downward force of impact upon
the ocean floor would exceed 14. 3 tons 2. 3% of the time if the instant of impact were

allowed to occur at random.

For a boom-lowered load, the optimum boom azimuth angle which minimizes

the r. m. s. vertical load displacement corresponds to a position directly over
the stern. For this boom position, the optimum barge heading is cross-wind.
With this barge heading in a State 4 Sea and a boom whose projection in the barge

deck is 150 feet, the r. m. s. value of the vertical load displacement is approxi-
mately 2. 4 feet when the boom is in the optimum (stern) position, whereas it
becomes 9. 6 feet when the boom is moved to the worst position, viz. directly

across the beam.



THE MOTIONS OF A MOORED CONSTRUCTION-TYPE BARGE IN IRREGULAR

WAVES AND THEIR INFLUENCE ON CONSTRUCTION OPERATION

By Paul Kaplan (1) and Robert R. Putz

INTRODUCTION

At present, increasing interest is being evidenced in the problems of
deep-sea operations of moored vessels. This concern has been brought about
by the successfully-conducted preliminary operations in drilling through the
ocean bottom from a surfaced ship, the operation colloquially known as the
"Mohole Project". On the other hand, from the point of view of military
operations, there is need for placing instrumentation packages and possibly
other military systems on the ocean floor for application to anti-submarine
warfare. These operations require a definite degree of precision, safety
during the course of the operation, and the capability of returning to a particular
locale and retrieving information and/or the equipment itself for further study
of data or for emplacement in another location.

As a result of this emphasis on deep-sea operations, it is necessary
to determine the response of a representative moored construction-type
barge in the open sea, and also to determine the characteristics of the
important parameters associated with lowering loads from such a barge to
the ocean floor and returning them to the ship. The parameters that are of
interest to the construction personnel aboard the barge are the forces in the
moving cables, the displacements and tensions in the lowering lines, the
degree of precision in placing the loads, the accelerations acting onie loads,
and the magnitudes of impact on the ocean bottom.

In order to arrive at some appropriate engineering estimates of the
capabilities of carrying out such operations, a theoretical study has been
carried out herein dealing with problems of this nature. The results of the
present study are applied to certain representative sea states in order to
determine the appropriate information under those particular conditions.

The study of motions of ships at sea is a general problem of naval
concern, and has received increasing emphasis during the last ten years by
virtue of the advance of statistical methods which describe the effects witi
greater realism than in previous studies based on simplified wave represen-
tations. Major concern has been devoted primarily to the problems of an ad -

vancing ship in head seas, with the prime variables of concern being the

(1) Oceanics, Inc.
(Z) Marine Advisers, Inc.



heave and pitch motions. Recent studies, however, have been concerned
with motions in oblique waves, wherein lateral motions (sway, yaw, and
roll) are also important. All of these studies involved very large ships
advancing in waves, and only limited theoretical studies have been developed
to predict adequately the motions in all six degrees of freedom under these
operating conditions. There is a large background of information related
to the hydrodynamic forces for zero speed of advance, but no complete
treatment of this situation for a realistic ship has been carried out, due to
the lack of practical importance for this condition. A treatment of the motion
of a free ship with six degrees of freedom in waves is a formidable problem
that has not achieved a complete solution at the present time, and when the
influences of moorings are also included, the problem is further compounded.
Nevertheless, there exists a need for some means of preliminary estimation
of the expected motions of a moored construction-type barge, and there
appears to be enough information available on the various hydrodynamic
forces to allow a study that will indicate the expected range of amplitude of
motion. The present study is devoted to carrying out this task, and the
results obtained will be useful as guide-lines to operating construction
personnel. A required program for experimental verification of the
theoretical results, together with recommendations for continued research
in this field, are also presented in this study.

This work was carried out under Navy Department, Bureau of Yards
and Docks Contract NBy 32206, with technical administration provided by
the U. S. Naval Civil Engineering Laboratory.
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1. FORMULATION OF TECHNIQUES FOR PROBLEM SOLUTION

In order to determine the motions of the moored barge in irregular waves,
it is necessary to determine the motions in regular sinusoidal waves. The aim of
this study is to predict these motions, and the technique to be utilized is that of
spectral analysis (Reference 1) wherein the statistical definition of the seaway in
the form of its energy spectrum is used as the initial data. The energy spectrum
of the time history of each motion of the vessel in response to irregular waves is
evaluated by the application of the ship response operators for the corresponding
degrees of freedom to the energy spectrum of the seaway. These operators are
obtained from the solutions for the motions in sinusoidal waves. In accordance
with the basic premise of this technique of analysis, a linear theory of ships'
motions is a prerequisite for this study.

The equations of motion in regular waves, for six degrees of freedom, will
be formulated according to linear theory by the balance of inertial, damping,
restoring, exciting, and coupling forces and moments. Both hydrodynamic and
hydrostatic effects due to the body-fluid interaction will be included in the analysis,
together with the influences of the mooring system. The longitudinal motions
(heave, pitch, and surge) will be coupled to each other, and similarly, the lateral
motions (sway, yaw, and roll) will also be coupled. There will be no coupling be-
tween the two planes of motions, in accordance with linear theory.

The hydrodynamic forces and moments such as damping, exciting effects
due to waves, etc. , will be determined by application and/or extension of the methods
described in References 2 through 5, which represent the latest techniques available
for analysis of the motion of ships in waves. Solutions of the equations will be found
for regular sinusoidal seas with varying wavelength and heading relative to the barge.
The response amplitude operators are found from these solutions, together with the
phases of the motions relative to the system of regular waves.

Assuming a knowledge of the oncoming irregular sea conditions, (e.g. in
terms of sea state, as specified by an associated surface-elevation energy spectrum
from information in Reference 6), the set of energy spectra for the ship motions
can be determined. Information on average values and probabilities of relatively
high values of the amplitudes of oscillations in the ship-motion time histories for
the different degrees of freedom can be found from the ship-motion energy spectra
in accordance with the methods of Reference 1. Phase information for ship motions
in a confused sea is obtained from the set of cross-spectra for the various pairs of
motions. Since the spectral energy model for irregular seas does not specify indi-
vidual phases for the sinusoidal components of the surface elevation, well-determined
phases at a given instant cannot be calculated; however, certain tendencies can be

indicated.
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Cross-spectra are also used to determine the energy spectra and, hence,
the various average values and the probabilities for the remaining quantities of interest
in the present study (viz. load-displacement time histories and other quantities
which are linear combinations of the ship motions and their time rates of change.)
These energy spectra may also be ubtained from the solutions of the differential
equations by linear superposition, and explicit use of cross-spectra here is neces-
sary only for obtaining phase information.

The barge will be assumed to be placed in a currentless seaway, with no
wind effects being considered. This appears to be somewhat unrealistic from the
practical point of view, but since concern in the present study is devoted only to the
motions induced by the seaway, this neglect is reasonable. The barge is assumed
to be moored with bow and stern moorings of conventional line and anchor type.

Initially, in the formulation of the program, some consideration was given
to the use of a propulsion type of mooring system, using outboard motors which
are controlled. The application of the outboard motors to the Mohole Project was
primarily from the point of view of dynamic positioning (see Reference 7), whereby
the barge was maintained in some average 1osition, thereby overcoming the drift-
ing effects caused by the environment. These effects are primarily due to winds
and currents, and the control by means of the propulsion system was mainly con-
cerned with these effects. If such a system were to be used for control of the
motions involved in the response of the system to waves, which are oscillatory in
nature, then the control effects of the motors must also be oscillatory. This imposes
quite a strain on the system as originally conceived and used for dynamic position-
ing.

The propulsion control action is primarily proportional to the rate of the
motion responses desired, i. e. it is a proportional velocity control, and hence it
would be required to alter the net thrust effects of the motors in proportion to the
frequencies in the waves. Aside from the strain on the system, it would be required
to provide effects in surge, sway, and yaw simultaneously, which is a further com-
plication. Representation of such action in an automatic control system applied to
the construction barge would be quite complex, and there are also questions as to
its actual effect on the motions of the barge. This is due to the fact that an altera-
tion in the velocity (i. e. damping) terms for the surge, svay and yaw degrees of
freedom would not have much influence on a motion phenomenon which is primarily
inertial in nature, with relatively large forces occurring during the motions. In
view of these various difficulties, no detailed consideration was given to the use
of a propulsion system for applying the rr oring restraints.

The line and anchor mooring system utilized for this study is a particular
system especially suited to deep-sea operations. The effects of these moorings will
be to provide restoring effects in the particular displacement of surge, sway and
yaw, thereby providing "spring-like" terms in the equations for these degrees of
freedom. As a result, there are certain natural frequencies associated with these

1-Z



motions, which do not ordinarily occur in the case of free (unmoored) ships. The

moorings are assumed to have a negligible influence on the motions of heave, pitch,

and roll, which have large hydrostatic restoring effects. Since linearity is the prime

assumption underlying this study, various motion effects known to occur due to the

nonlinear influences will not be accounted for in this study. Effects of this nature

include "induced" motions such as that of roll in regular head seas (see Reference 8),

and also the nonlinear yaw tendency of ships due to nonlinear inertial effects (see

Reference 9). The existence of the mooring restraints will mitigate the effects of

some of these phenomena, and it is also possible that the latter may not be present

to any appreciable degree when irregular waves are considered since these non-

linear effects usually depend upon long periods of continuous oscillatory wave mo-

tions for their occurrence.

Following the evaluation of the various motions of the moored barge, equa-

tions will be formulated to determine the forces in the mooring cables and the dis-

placement of and tension in lowering line as a function of the different degrees of
freedom of the oscillating barge platform moored in the seaway. The line displace-

ment and tension, which are functions of the ship motions, will be related to the
seaway and all of the resulting spectra will be determined. Operations on these

quantities will provide information on expected amplitudes for particular sea states.

In the course of this work, expressions for the vertical accelerations of the loads

will be determined and their magnitudes will be similarly expressed. This infor-

mation will be useful for study of impact of the loads on the ocean bottom.

Computations of the amplitudes and phases of the six separate motions of

the moored barge for the complete range of possible headings will be carried out

for wavelengths varying from 100 feet to 800 feet. This will cover the range of

periods significant for ship motion in an operational environment up to sea state 5.

The relatively low frequencies at larger wavelengths will allow the effects of the

larger wavelengths to be determined by simple static considerations, as long as no
resonance conditions occur in that range of wavelengths. These further results

may be considered, if necessary to broaden the information on the response ampli-

tude operators for application to spectral determination in the higher sea states.

The particular vessel for which computations will be carried out is the
CUSS I, which was the vessel used in the preliminary Mohole drilling operation.

This ship is considered representative of the class of construction-type barges
which will be utilized for deep-sea construction operations. A diagram of the

barge, together with its mooring and load-lowering lines, is shown in Figure 1. 1.

A summary of the numerical values of the parameters characterizing the moored-

barge system is presented in Table 1.

In the course of the exposition, the general nature of the problem as well

as its solution will be delineated using the general probabilistic model of an essen-

tially two-parameter stochastic process, representing the seaway, exciting a rigid

body representing the barge, and the related one-parameter vector stochastic pro-

cess whose components are time-history functions representing the motions of

the barge and the simultaneous associated n-Ou-ing and load-lowering phenomena.

1-3



Table 1

Numerical Values of Moored-Barge -System

Length =L =260 ft.
Beam =B = 48 ft.
Draft = 10 ft.
Vertical distance from CB to CG = 1BGI =9. 8 ft.
Vertical distance from free surface to CG = (OG) =5. 1 ft.
Vertical distance from CG to keel = IKGJ =15. 1 ft.
Metacentric height = JGM =8. 16 ft.
Displacement =2823. 2 long tons
Weight =W =6. 324x10 6 lbs.
Mass =m 197. 624x10 3 slugs
Pitch moment of inertia 1 =IYo =m(. 25L)2 =706.7xl0 6 slug-ft. 2

Yaw moment of inertia 1 =Izo =m(. 25L)2=706.7xI0 6 slu&-ft. 2

Roll moment of inertia ?. =Ixo =m(B/3)2=49xlO6 slug-ft. z

Total roll moment of inertia (including
added inertia due to fluid) =Ixt =78.69x10 6 slug-ft. 2

Surge period3 . =Tsurge =79 seconds
Sway period =Tsway =64.5 seconds
Heave period =Theave =4.6 seconds
Pitch period 4 =Tpitch =4 seconds
Natural roll period =Troll =7. 75 seconds
Effective spring constant for mooring

cable 5. =C =1250 lbs. /ft.
Effective mooring system spring constants:

Surge =kx  =1250 lbs. /ft.
Sway =ky =3750 lbs. /ft.
Yaw =ky =633. 75x10 5 lb. -ft. /rad.

Depth of barge = 15 ft.

1. Assuming longitudinal gyradius = 0. 25L
2. Without added fluid inertia; it is assumed that transverse gyradius = B/3
3. For all motions these are uncoupled periods determined in terms of

effective spring constants and values of total masses or inertias. The
effects of coupling will change these somewhat, but for first approximations
and interpretation of critical conditions, this will suffice.

4. From Stevens Institute of Technology model tests (Reference 16, Appendix)
5. Bridge strand wire rope, of cross-section 0. 595 in. 2
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The solution to the problem will be delineated in two ways. First, it will
be given in terms of the minimal information (e. g. the complete matrix - - valued
cross-spectral or cross covariance functions) that is necessary in view of the
assumed Gaussian nature of the input to the system, the linear nature of the sys-
tem itself, and consequently, the Gaussian nature of the output of the system.
Then, once the solution has been strictly characterized, it will be given in terms
of examples of the available inferences and other accessible results concerning
output quantities.

These inferences will include those derivable from both the descriptions
of the energy spectra for individual motions, and the cross-spectra for pairs or,
generally, sets of motions of time-varying quantities. In view of the knowledge
concerning the energy spectra which will be obtained, the treatment will necessarily
extend beyond that providable by the convenient narrow-band spectral theory. In-
formation on the probability distributions of ordinates on the time-history curves
and of instantaneous amplitudes will be supplemented by information on the distri-
butions of the heights of the relative maxima (or peaks) on the motion curves and
mean zero-crossing frequencies, together with simplified methods of obtaining it
from plotted energy-spectrum curves for the motions. Information on the relative
values of instantaneous amplitudes and phases of a pair of simultaneously-observed
motion time histories is obtainable in the form of joint probability distributions for
quantities associated with the components of the complex instantaneous gain corre-
sponding to the motion time history pair. All available information concerned
strictly with phase relationships which is contained in the probabilistic solutions is
thereby obtained. Additional treatment of the general properties which include the
phase-relationship concept, involving a more explicit use of the probabilistic struc-
ture of the vector stochastic process is provided by direct utilization of the cross-
covariance matrix for the generation of typical sample values of the motion quan-
tities at one fixed instant of time. The extension of this technique to the generation
of sample segments of the time-history functions extending over a representative
length of time would give a complete solution of the problem in graphical form.
The use of this general technique yields, in addition to the sample values, the in-
formation concerning the predictability of one or more motions from a given set of
motions. Examination of the spectral-coherence structure of the solutions which
provides additional information related to phase relationships is obtained from the
transfer functions for the generation of the time history of one motion from that of
another.

Obtaining the solution to the problem of characterizing the barge, lo~d, and
mooring motions in various seaways involves a great number of cases, due to the
number of possible comLinations of the independent parameters, preventing that a
complete presentation of these results is prohibitive. Specifically, this problem
has sea state (i. e., wind speed), barge heading, relative to wind, and method of
load lowering as its independent parameters; these take on, respectively, 3, 24
and 25 distinct values in this analysis, resultialg in 3 x 24 x 25 = 1800 possible
cases of the problem.
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For each case, the solution to the problem concerns the nature of the mu-
tual relationships among a set of 19 motions. If one restricts the nature of the
solution for any one case to the determination of the minimal information necessary
to specify the resulting 19-component output vector stochastic process, viz. its
matrix-valued cross-spectral density function, then the formal solution is indexed
by three independent parameters. These are wavelength, output time history for
matrix row, and output time history for matrix column, Since the effects of each
of a set of eight wavelengths were considered, the three parameters take on 8, 19
and 19 distinct values, respectively. Hence there are 8 x 19 x 19 = 2888 solution-
numbers for each case, yielding a total of 1800 x 2888 = 5, 198, 400 values for the
complete solution of the problem.

This comprehensive enumeration of cases may serve, in part, to clarify
the structure of the problem. The results represent an overstatement of the mag-
nitude of the task in so far as redundancies and instances of simple proportionality
in the set of 19 output time histories may reduce their equivalent number to 15 or
16; likewise, the consideration of as many as 24 different barge headings relative
to the wind, as well as Z4 different boom angles, might be considered an extrava-
gance -- if so, the number of different problems might be reduced by a factor of
about 4. This manner of stating the task, however, is also in a sense, conserva-
tive, since it calls for no interpretation of the results, consisting solely of cross-
spectral density functions; no information on total energies or root-mean-square
values for the various motions, information of any kind on amplitudes of oscilla-
tion or phase relationships, or of optimum operating conditions would be included
explicitly in these results.

It appears desirable to direct attention to the very real problem, encountered
during the phase following the determination of the initial results (i. e. , the response
operators) given by the hydromechanical theory and preceding the application of the
oceanographic and stochastic theory, of anticipating the most useful calculations a
priori, out of the great wealth of cases possible to present. Indeed, considerable

effort was directed at this time just toward determining which cases were feasible
to calculate!

A change in emphasis occurring after the initial probabilistic results were
obtained was primarily responsible for magnifying this problem and resulted in
its reappearance after the first draft of this report had been prepared. It then
appeared that the desirable form for the presentation of the solutions to the problem
was substantially more comprehensive, more detailed, and more expository in nature

than the form programmed.

There appears to be little doubt that the degree of completeness of the
present edition of the report has been affected by the earnest attempt to increase

the scope of its coverage, while at the same time satisfy the dual requirements of
maintaining an adequate level of scientific style and keeping the applicable results
accessible to the uninformed reader. As to the outcome, the challenge was accepted,

the scope enlarged, with considerable attention being directed toward providing
interpretive aid to the reader, and a resulting disproportionate amount of available
effort was found to remain for preparing a totally satisfactory report to be issued
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on a finally-determined date. The technical problem of presenting the results
has been regarded as comprising the following requirements: to provide, (a) as
much fundamental information covering as many cases as possible; (b) as much
additional information having importance for applications as possible; (c) as
many additional examples suggesting further results as possible; and (d) as much
interpretation and insight into the manner in which the presented results arise
from the given data of the problem. The reader may thus be helped to fill in gaps
and extend the range of the study in directions which may not require additional
digital computer time.

As a natural outcome of the results of the present study, certain specific
methods of data analysis involving spectral concepts suggest themselves as a
means of partial verification of these results by means of an experiment conducted
with an instrumented vessel in a natural seaway in the ocean. Such methods
involve either the testing of various hypothesis regarding the spectrum of the
seaway and the complex response operators for the vessel or the formation of
numerical estimates of these quantities.
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2. APPLICATION OF PROBABILISTIC AND SPECTRAL CONCEPTS TO THE

ANALYSIS OF OCEAN WAVES AND SHIP MOTIONS

Wind-generated surface waves in deep water may be regarded in the
linearized theory as the result of the superposition of a continuum of elementary
unidirectional sinusoidal waves, with each of which there is associated a wave-
length, or frequency, and a direction of propagation. A function of frequency and
direction which assigns a wave amplitude (or, equivalently, an energy) density
to each elementary wave is known as a directional spectral energy-density dis-
tribution describing a given surface wave regime, or seaway. Since the wave phase
remains unspecified, a seaway for which the energy spectrum alone is given, con-
tains an element of indeterminacy. This is natural if the time and place, as well
as the manner of generation, of the waves are likewise unspecified.

A precise mathematical model for the seaway which has proved useful em-
ploys the probabilistic concept of a temporally homogeneous, or stationary, vector
stochastic process (Reference A). As applied to ocean surface waves, one formula-

tion of this model associates with the unspecified set of phase angles of the elemen-
tary component surface waves a multi-dimensional probability distribution, the
component random phase variables of which are independently distributed with a
common uniform probability density extended over the complete 3600 circle. This
type of randomness for phase angles reflects a corresponding uniform randomness

or indeterminacy for the variable representing the time of observation.

In general, to each set of values of the instantaneous elevation of the water
surface, measured from its mean level, at a specified set of instants in time and
points in space, this model ascribes a joint probability distribution of the type known
as multinormal, or Gaussian. This probability distribution is unchanged if the ob-
servations are uniformly advanced or retarded in time, or if they are translated
horizontally in space. Under these circumstances, the special nature of the multi-
normal probability distribution is such that it is uniquely determined by the speci-
fication of a set of functions, known as the cross-covariance functions, or equiva-
lently, by the set of Fourier transforms, or spectra, of these functions. These
spectra are known as the cross-spectra for the vector stochastic process corre-

sponding to the measured time histories at the specified set of locations. The set
of cross-spectra is determined by means of linear surface-wave theory by the
directional spectral energy-density distributions for the surface wave regime.
Equivalently, the directional spectral energy-density distribution determines the
cross-covariance functions and, hence, the (joint) multinormal distribution of

values for the surface elevation at specified locations.

Summarizing what has been stated above concerning the model employed
for the seaway, we have (1) the seaway or surface elevation of the ocean is com-
posed of a continuum of elementary sinusoidal waves characterized by their lengths
and directions as well as their phases and amplitudes; the phases are regarded as
indeterminate, but the amplitudes are specified by a directional spectral-energy
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density function IS(4 ,f)I'z, (Z) the phase indeterminacy results in multinormal
(Gaussian) probability distributions for the values of the surface elevation at dif-
ferent locations; these probability distributions are completely characterized, either
by a set of cross-covariance functions or by a set of cross-spectral-density func-
tions which in turn are determined by the directional spectral energy distribution
function 1S(c0)0Z

It appears difficult to overemphasize the importance of the class of multi-
normal (Gaussian) probability distributions or to point out an excessive number of
its special properties. A very general property which it possesses is that of being
unaltered by the performance of linear operations. Operations of this type range
from simple addition or subtraction of two components, to multidimensional linear
transformations, and to mathematical transformations corresponding to passage
through multi-channel systems whose net effect corresponds to the relationship be-
tween the excitation functions and the solution functions of a system of simultaneous
linear integro-differential equations. These properties of linearity greatly simplify
the problem of generating samples from multinormal distributions with a given set
of covariances by the use of a table of random numbers.

In particular, if any subset of a set of random variables having a multi-
normal distribution is considered to have a given fixed set of values, the remaining
complementary subset likewise has a multinormal distribution; if the first subset
is deleted from the set, this result still holds. In either case, the means, variances
and covariances for the remaining set of random variables are readily calculable,
which is an aid to carrying out linear least-squares prediction between the random
variables of the set. Each of the set of parameters necessary to specify a multi-
normal distribution refers to no more than two variables at a time, a reflection of
the fact that all multivariable moments of order higher than the second are ex-
pressable in terms of those of second order.

The one-dimensional and the two-dimensional normal (Gaussian) or bi-
normal distributions are extensively tabulated, including their cumulative (integral)
forms. The sole parameter necessary to specify the distribution for a one-dimen-
sional normal random variable is its r. m. s. value, or standard deviation, c--x.
The one-dimensional case will be discussed below.

The set of three parameters specifying the two-dimensional distribution for
the random variable (X, Y) with zero means consists of the one covariance between
X and Y and the two individual variances for X and Y. These are commonly denoted
as 1)-Xy, 'X and y, respectively, and by definition are, respectively, the
mean of the product of X and Y, the mean square of X and the mean square of Y.
The square roots, kfX and try, of the latter two are the so-called standard devia-
tions, or root-mean-square (r. m. s.) values, of X and of Y. The ratio of the co-
variance between X and Y to the geometric mean of the variances of X and Y is the
ordinary coefficient of correlation,/x/ ) : Y"

X Y X 0
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Having described some features of the multinormal distribution, we proceed
to consider the application to the moored barge and return to the consideration of
the stochastic process representing the time history of the surface elevation Y (0, 0, t),
at the fixed point in the mean surface where coordinates are referred to the coordinate
system used in Appendix A. Imagining the barge to be moored so that its center of
gravity is vertically below this point, the excitation functions and equations of motion
for the moored-barge system at each wave length are seen from the Appendix to be
obtainable in a linear manner from YL(0, 0, t). Since the system of differential
equations is linear and t (0, 0, t) is random, and Gaussian, it follows that the values
taken on by the seven-component vector function (X, Y, Z, ,, 6 , 9) are random,
and that the vector is represented by a seven-component stochastic process. In
other words, the output of the moored barge in response to the input wave regime is
non-deterministic, and for no time can any definite values be assigned to the ship
motions nor to the surface elevation. Only probability statements and statements
about probability distributions such as average values and other moments of random
variables may be obtained. The same is true of a vector function such as (X, Y,
z, #5 9,P 1 F, I, ?.Pt-. ., g7,), where the ? s are surface -elevation time histories
at a-set of different locations. It will be seen that the effect of the general direc-
tional spectral-energy density function is to introduce a lack of coherence between
the pairs of individual barge motions and surface-elevation time histories.

The complete set of cross spectral-density functions necessary to charac-
terize this vector stochastic process may be obtained from the solutions of the dif-
ferential equations, i. e. from the complex response operators and the directional
spectral-energy distribution for the wave regime, as described in Appendix H, since
these operators, by definition, yield the amplitudes and phases of the barge motions
due to individual sinusoidal surface-elevation waves. Furthermore, the complex
response operators, and hence the cross-spectral density function for any two linear
combinations of barge motions and surface elevation, may be found by forming the
same linear combinations of the complex response operators for the barge motions.
In this way all the available information the present model of the seaway is capable
of providing may be obtained in the form of the set of all possible cross spectral-
density functions associated with the time histories of interest.

We next consider the interpretation and application of the information which
is available, once we have computed the cross-spectral densities in the case of a
randomGaussian seaway. In the first place, there are available through computa-
tionthe moments of each of the cross spectral-density functions. The moment of
order zero of each spectral energy-density curve, corresponding to the area under
the spectrum, is also the total energy and the mean-square value of the random time
history involved. Its square root is the root-mean-value for the time history.

A knowledge of the r. m. s. value for a time history, f(t), allows the frac-
tion of the time spent by the ordinate on the time-history curve between any two
specified ordinate levels to be determined. In particular, the probability that the
ordinate on the curve will exceed, in absolute value, any level of interest, at an
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arbitrarily-specified distance above the mean (zero) may be determined. For this
purpose, tabulated values of the one-dimensional normal (Gaussian) probability
integral function may be used. For convenience, the equivalent of such tables is
provided by the graph shown in Figure Z. 1, making use of common "normal proba-
bility" paper. Shown on the graph are representative curves, each of which corre-
sponds to a normal distribution having a mean value of zero and the r. m. s. value,
or standard deviation, 5- ', equal to the value labeled on the curve. The units are
arbitrary and may be taken to represent linear or angular displacements, measured
in feet, degrees or radians. The manner in which the curves may be used is
illustrated in the following examples.

The ordinate on a time-history curve, denoted by X(t), is a random variable
normally distributed about a mean value of 0 and with an r. m. s. value of 3 feet.
The probability is required that X(t) will lie between +6 feet and +10 feet if the time
t is selectedat random. The probability expressed in percent is obtained by re-
ferring to the curve labeled (j-'= 3, entering the ordinate scale on the left at each
of the two values +6 and +10, reading off the percentages marked on the abscissa
scale at the bottom at the points at which the curve for 0- = 3 intercepts the hori-
zontal lines through +6 and +10 and subtracting. The desired probability is approxi-
mately 99. 95% - 86. 0% = 13. 95%. As a second example, consider a case in which
the two ordinates are equally distant from the mean (zero) ordinate level. Thus,
the probability that X(t) will lie between + 10 is seen to be approximately 99. 95% -
0. 05% = 99. 90%; in this case, the symmetry in the figure may be utilized 'to shorten
the calculation by replacing the abscissa reading which is lower in value by "50. 0%"

and doubling the resulting difference, yielding (99. 95% - 50. 0%) x 2 = 99. 90%, as
before. As a final example, consider a case in which the probability for the random
variable to lie outside a given interval is required. Thus, if the r. m. s. value of
a random variable, V (t), having zero mean is 50, the probability that I¢(t)I > 80
is given by the complement of 95. 0% - 5. 0%, which is 100% - 90% = 10%. The final
probability obtained in this example is illustrated by the total shaded area shown
under the curve appearing as an inset in Figure 2. 1, if we take the values of CO-
and k shown there to be 5 and (1. 6)5 = 8.0.

Although the limits of Figure 2. 1 extend to probabilities as high as 99. 98%
or as low as 0. 02%, if one's interest is in extreme values, more extensive tabula-
tions of the normal probability integral would be required to expand this range.
Since confidence in the applicability of a given probability distribution is often
least at its extremes, this procedure may well place an undue strain on the Gaussian
seaway model.

Additional curves may be constructed for any desired values of Cr by draw-
ing the straight line of the graph in Figure 2. 1 determined by the point of intersec-
tion of the curves shown and the point on the dotted vertical line through 84. 1% at
the height corresponding to the value of G-on the vertical scale on the left. Alter-
natively, the curve shown for (T" = 1 may be used quite generally if one divides the
ordinate levels of interest by the r. m. s. value of the random variable concerned.

2-4



In addition to the energy spectra for individual time-histories, the complete

set of cross-spectral densities for the solutions determines, via the set of cross-
covariance functions, the complete specification of the joint probability density for
the distributions of the values of the time-history selected at any desired set of in-
stants. The knowledge of any one of these joint distributions, together with the
various marginal and conditional probability distributions arising when certain time
histories are either ignored or assigned certain values, may represent a considera-
ble amount of information.

In a meaningful sense, such information might be regarded as constituting
the general solution to the problem of the present study; however, it is often desired
to provide somewhat more tangible information, concerning, for example, quanti-
ties visually apparent in the geometrical structure of the trace on a graphical re-
cording of the time histories. To obtain information regarding the probability dis-
tributions for quantities of this kind, one may augment the original set of time-
history solutions by adjoining to it various closely-allied time histories such as their
time rates of change and the functions in quadrature with them, i. e. , their Hilbert
transforms or "conjugate functions". The joint probability distributions for the en-
larged set of functions are derivable from the original complete set of cross-spectral
density functions. With such probability distributions available, information re-
garding a variety of random events and variables becomes available in principle.
Among those variables for which rather complete results are known are the slope
of the time-history curve, its instantaneous amplitude, its phase and frequency,

and the heights of its relative maxima ("peaks" , measured from its mean value).
In the case of a pair of random time-history functions, information is available
(see below) for the instantaneous complex-valued gain (incorporating both instan-
taneous phase shift and amplitude ratio).

For all of the quantities mentioned thus far, complete probability distribu-
tions have been rigorously worked out for stationary Gaussian stochastic processes,
and expressions for most of them are available in the literature. In addition, ex-
pressions are available for the values of such parameters as the expected number
of times per second that the time-history curve (or its slope) passes in the same
direction through its mean value, the mean height of the highest one-third of the
instantaneous amplitudes, and the mean height of the highest one-third of the peak
heights.

The information referred to thus far, is contained entirely in a relatively
small set of numbers, a few of the lower-order spectral moments. The absolute
moment of the energy spectrum of order, p, if it exists, may be defined as

I,

where (t) is the bilateral spectral density function.
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Figure 2. 2 shows the cumulative probability distribution for the ordinate
on a random time-history curve (measured from its (zero) mean ordinate) at a
point which is a relative maximum on the curve. It, therefore, represents the
"peak height" distribution, which is seen to depend on two parameters: viz., the
r. m. s. value of the ordinate denoted by e- P and a dimensionless parameter de-
noted by / . The latter parameter has the following interpretations: (1) it is the
negative of the ratio of the mean zero-crossing frequency for the ordinate to that
for the slope; (2) it is the coefficient of correlation between the ordinate and the
second derivative; and (3) a quantity closely related to simple ratios of moments
of the energy spectrum.

The use of the curves in Figure 2. 2 is illustrated by the following example.
Given 0-i = 4. 0 feet, /. = -0. 70, the probability, 99. 2%, of a peak not exceeding
12 feet, i. e., three times the value of o-i, is read in percent from the horizontal
scale at the point corresponding to the intercept of the curve for -0. 7 on the hori-
zontal line through the level y = 3 on the vertical scale.

The probability distribution corresponding to the curve labelled " = -11
in Figure 2. 2 is the well-known Rayleigh distribution. This distribution is in
fact the probability distribution for the ordinates on the instantaneous amplitude
curve (or the real part of the complex envelope) for a given time history. It is
seen here to apply to peak heights in the limiting case in which the energy spectrum
for the time-history function has infinitesimal width. This distribution is often
used as an approximation to the distribution of wave heights or peak heights in the
absence of knowledge of the relative bandwidth of the energy spectrum.

Figure 2. 3 shows the manner of variation of the mean value of the maximum
wave amplitude occurring among a set of consecutive oscillations. As an example
of its application, consider a case of 300 oscillations observed on a time-history
record for which the r. m. s. value is 4. 0 ft. Reading up from 300 on the horizontal
scale, across to 3. 5 on the vertical scale, and multiplying by 4. 0, yields 14. 0 ft.
for the expected maximum amplitude during a set of 300 oscillations.

It may be seen from all three figures appearing in the present chapter,
giving probability distributions or their parameters, that the r. m. s. value, (7j,
of the time-history function, or equivalently, the square root of its total energy
plays a direct role. In Figure Z. 1 the effect of G'i on the percentiles of the instan-
taneous ordinate distributions is seen to be linear. In the remaining two figures,
0' i is the non-dimensionalizing constant used on the ordinate scales (as might also
have been done on Figure 2. 1). Therefore, it is clear that the values to be expected
for the ordinates, or peak heights, at any given probability level, or for the average
value in the case of the maximum amplitude are all directly proportional to the r.
m. s. value 3-i. Of the large number of parameters available for describing an
energy spectrum, its total energy, or, equivalently, the r. m. s. value of the time
history, is the most important single parameter.
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Leaving the subject of energy spectra, and considering briefly the subject
of cross-spectra proper, it is clear that there is no less information content in
this type of spectrum; on the other hand, they are considerably more numerous.
However, the examples of their application given here will be relatively limited.

When a pair of time-history functions are considered, there is a single
complex-valued cross spectrum or, equivalently, two real-valued co- and quad-
rature spectra involved. When a set of n time-history functions are considered,
there are nZ complex-valued cross spectra which include the n autospectra. The
moments of these (complex-valued) cross spectra play the same role as they do
in the case of energy spectra. Although there is more information present in the
case of a set of time histories, relatively few interpretations or other results
have appeared in the literature. One set of results is given below concerning the
moment of order zero of a complex-valued cross spectrum in connection with the
problem of describing the phase relationships between pairs of time histories.
In this case, consideration is given to the random difference between the instan-
taneous phases for the two time histories, as well as the ratio of their instantaneous
amplitudes. Further, the above two quantities may be paired together into the
concept of instantaneous complex gain.

Further matters of interest when more than one time-history function is
under consideration include questions of synchronism, coherence, and the degree
of interpredictability between the time histories. Spectral coherence, or coherency
has been adopted as a technical term used in the analysis of multiple time-history
functions (time series). Prediction of the value of one time history at a specified
time from a knowledge of the values of others at other specified times may be
carried out in a predetermined optimum manner, minimizing the mean square error
of predictions, if the cross-spectral densities are available. In such prediction,
the values of the cross-covariance functions for appropriate values of their argu-
ments may be used when finite predictions are employed, or the cross-spectral
densities may be used more directly if optimum transfer functions are desired for
use on the entire extent of the time histories. In the latter case, the phase-shift
characteristics of the transfer function are of interest in describing the tendency
of the phase relations between the time histories. Use of the spectral coherence
function here enables the magnitude of the error of prediction to be calculated.

The information contained in the complete set of cross-spectra for a set of
random time-history functions also will yield information regarding their nature
by making it possible to generate simultaneous random samples from these time
histories. This way of looking at typical results may be carried out by calculating
the cross-covariance functions and determining coefficients to be applied to the
entries in a random-number table.

Finally, cross-spectral information furnishes a means of developing test
criteria and methods of estimating the true response operators of a vessel from
ship-motion data taken in an actual seaway. Simultaneous recordings made of
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the flow field in the water associated with the surface waves will increase the
efficiency of such procedures. Analogous techniques can be used for inquiring into
the nature of the directional spectral-energy distribution of the surface elevation.

In this way, some of the results and assumptions of the present study can be sub-
jected to examination.

To determine definite numerical results from a study based upon the methods
and general assumptions we have describedrequires that a particular, numerically
specified, seaway be given. For this purpose, a convenient model is furnished by
the so-called directional Neumann spectrum. As we have noted, the application of
the concept of a Gaussian stationary stochastic process to the local seaway yields
a number of results describing features of "individual waves" in an irregular sea
such as mean wave height, significant wave height (H 1 / 3 ), etc. The theory of
Neumann and Pierson has resulted from the attempt to correlate such parameters
with the wind velocity, vw, in the wave-generating area in the case of the "fully
arisen sea", which results when the time duration and spatial extent of the wind
field are sufficient to cause wave-equilibrium conditions. The chart appearing on
the following page serves to define a "sea-state" scale for the case of a unidirec-
tional wave spectrum analogous to the Beaufort wind scale.

For computational purposes in the present study, the Neumann-Pierson
spectral-energy description of the seaway has been adopted, and calculations made
for three particular sea states, corresponding to three particular wind speeds.
The following table illustrates the conditions.

TABLE I

Sea State Wind Speed Significant Wave Height Surface Elevation (Time History and
Number vw (knots) H 1 / 3 (feet) Energy Spectrum)

r. m. s. value, Total ener y,

C-, (feet) 012, (feet)! ZO-=E

3 14 3. 3 0.81 0.66 1. 3Z

4 19 6.9 1.75 3.05 6. 10

5 Z2 10.0 Z.50 6.23 IZ. 46

It will be noted that in each case the variance or the square of the r. m. s.

surface elevation time history, denoted by o- 2, is taken as the total spectral
energy which is, in turn, one-half of the quantity often designated by "E". For

clarity, we state here that the variance and the total energy are regarded in the
present report as the area, over its entire range of definition, under the curve
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representing the spectral energy density of the surface elevation time history. It
is often convenient, for formal purposes, to consider the range of frequency over
which the energy-density spectrum is defined to extend from 0 to +00, or from
-00 to +00 according to the context. Whichever interval of definition is used, the
energy-density spectrum used with it will be adjusted by the omission or insertion
of a factor of one-half in order to yield exactly equivalent results in either case.

The directional Neumann spectrum model has a number of features which
result in both convenience in treatment and some degree, perhaps, of artificiality.
The manner of dependence of the distribution of spectral energy over direction
specified by this model is independent of wave length, which results in a considerable
simplification of computations. The specific manner of energy dependence upon
wave length, and also upon direction, both contribute to computational convenience,
as well. Often these features are useful in simplifying and reducing the number of
individual cases which must be treated.
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3. RESULTS OF COMPUTATIONS FOR INDIVIDUAL BARGE MOTIONS IN VARIOUS
SEA STATES

The results obtained for the barge motions, individually considered, is
presented in this chapter in two parts: (1) solutions of the differential equations for
the various cases of regular waves, and (2) results for the various cases of irreg-
ular waves obtained by applying the Neumann surface-elevation energy spectrum
to the amplitude information implicit in these solutions. The results obtained when
the simultaneously-occurring barge motions are considered together, such as the
nature of the mutual covariances (or coefficients of correlation) and phase relation-
ships among the various barge motions, are discussed in a later section.

The motions of the barge, considered as a rigid body having six degrees
of freedom, and referred to a right-handed rectangular Cartesian coordinate
system with origin at its center of gravity (CG), consist of three translational and
three rotational motions. The former three, viz. surge (x), sway (y) and heave
(z), are each defined as a rectilinear displacement whose positive sense is in the
direction of one of the coordinate axes. In particular, surge displacement is in
the fore-aft direction, being positive when toward the bow; sway displacement is
in the port-starboard direction, being positive when toward the port side; and heave
displacement is in the vertical direction, being positive when upward. The three
rotational motions, viz. roll (I ), pitch (e), yaw (,j ), are each defined as the
angular displacement corresponding to a rotation about one of the coordinate axes,
and whose positive sense is in the right-handed sense for rotation about a directed
axis. In particular, roll displacement takes place about the fore-aft axis, being
positive when the port side rises; pitch displacement takes place about a horizontal
axis parallel to the beam, being positive when the stern rises; and yaw displace-
ment takes place about a vertical axis amidships, being positive when the bow ro-
tates portward.

When, as described in the Appendix, the barge is in sinusoidal surface
waves, the six motions of the barge are governed by a system of six simultaneous
ordinary second-order linear differential equations, with time as the independent
variable. For any sinusoidal wave propagating in a direction making an angle, 6
with the direction of heading of the barge (measured as positive in the counter-
clockwise direction when viewed from above) the excitation functions (right-hand
members of the differential equations in standard form) are found to depend upon
the angle z' for the wave direction, as well as its wavelength, A , whereas the co-
efficients of the remaining terms are independent of .I

For the deep-water conditions assumed in the present study, the length of
a sinusoidal wave is determined by the relations, c = (g^/21) 2 and T = (Z 2,/g)l/2,
the phase propagation speed, c, of the wave as well as the wave period, T (or,
equivalently, its frequency, given by f = T, in cycles per second, or(O = ZIT/T,
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in radians per second. Vertically above the point with coordinates (x, y, z) re-
ferred to the center of gravity, CG, of the barge, the sinusoidal time history,
' _ (x, y, t), of the elevation of the surface of the water, measured from its mean
level, is given by

where a is the (non-negative) amplitude of the sinusoidal wave, and specifies
an arbitrary phase. It may be pointed ottt that in practice ?\ and P , as well as
a and S may be chosen independently of one another in order to specify a particu-

lar surface wave. The concept of a wave regime defined by an amplitude and phase
spectrum corresponds to the assignment of an amplitude, a, and a phase S to each
possible pair composed of a wavelength, X , and a wave direction, P .

The differential equations for the barge motions, used in the present study,
have been formulated and solved for convenience for the case of an exciting wave
for which a = 1 and 9 = 0-, as described in the Appendix. The time history of the
surface elevation above the location of the center of gravity of the barge (in the
latter's absence) is thus assumed to be given by (0, 0, t) = a sin V (-ct) =

a cos (Wt + Sr) =1 fpt.Wt'C,))i wherew = ZT/T = Z?T(c/7) is the angular
frequency of the wave, i is the imaginary unit, andl.A33i denotes the real part
of the complex number z.

Solutions to the equations were obtained for the time history of the r-th
ship motion in the form )(t)z av, COS( ' + , . Comparing with the
surface elevation, - (0, 0, t) = cos (wt + T'/Z) it is seen that the resulting ship
motion is sinusoidal, with amplitude ar times that, and phase E r = I - /Z
greater than that, of the sinusoidal surface. If we set Tr-. -=vvpe,&' , thereby
choosing Mod Trj = I Trj I = ar and Argj rjT = 2Trj = Er, we obtain the so-
called complex response operator for generating the r-th ship-motion time history
from a siiusoidal surface elevation time history at the location directly above the
CG of the barge. Thus, if the latter is given by '9 (t) = a cos (U0t +0.1 ) =

the ship motion will be given by f "" (t)= 0.(T 0. Qv CUciat(N)] =

It may be noted that there is one such complex response operator TrI.( ,P)
for each wave frequency and wave-direction pair. Its modulus, or magnitude,
Mod Trj = I Tr- , is the amplitude amplification factor or response-amplitude
operator and its argument, Arg Tr 1 = * Tr =ON-ev- , is the phase-shift dif-
ference or response-phase operator to be applied to the surface elevation.

In the present study, solutions to the equations were obtained for the com-
plex response-operators Tr-. (.,p@) for the values of o corresponding to the eight
wavelengths % = 100, ZOO, ... , 800 feet, and the values of wave heading relative
to that of the barge, = 0, +30, 60, ... , + 150, 180'. Subsequent uses of
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the response operators indicated the advisability of interpolating between these

solutions to obtain values for 5 = + 15 ° , +45",..., +165 ° as well. This inter-

polation was done graphically.

The resulting values of the two-argument, complex-valued functions

Trj , may be presented in a number of ways. The real part and the imaginary
part of the complex numbers may be plotted separately, as may also the modulus

(amplitude ratio) and the argument (phase shift). Alternatively, the complex num-
ber plane may be utilized to display directly the complex-number values of the
response operator. In any case, it is convenient to represent the variation of the
response operators when one or the other of the independent variables is held
fixed and the remaining one allowed to vary.

A. Solution for Regular Waves

The six response amplitude operators, Tr (cOf), are shown plotted
against the wave heading, (b , in Figures 3. 1 throdgh 3. 16. These figures show
the amplitude of the sinusoidal time history of each of the six motions of the barge
as a function of wave heading relative to the barge when the latter is in simple

unit-amplitude sinusoidal surface waves having one of the wavelengths, k = 100,
200, . .. , or 800 feet. The complete 360' range of directions of wave propagation
relative to the barge heading (based upon the values obtained at wave headings of

0., +15 ° , + 300, ... , +180) is covered. As is to be expected, the variation of
the amplitude of each of the barge responses shows considerably more regularity

for wavelengths substantially exceeding the barge length than for the shorter wave-
lengths.

The figures for the longitudinal motions (Figures 3. 1 through 3. 8) show
that the surge and heave amplitude responses increases uniformly for all wave
headings, as the wavelength increases. The pitch amplitude response exhibits

a similar uniform behavior with regard to wave headings, increasing with wave-
length up to wavelengths between 300 and 400 feet but decreasing thereafter. It
may be seen that surge amplitude response is smallest for beam seas and largest
for head and following seas rising to 0. 8 for A- = 800 feet. Heave amplitude re-
sponse is smallest for head and following seas and is at its maximum for beam
seas, virtually attaining the value 1. 0 for A - 400 feet; the variation of the am-

plitude of response with wave direction is relatively small for wavelengths ex-
ceeding 500 feet. Pitch amplitude response is smallest for beam seas and largest
for head or following seas, provided the wavelength is at least 400 feet; it reaches
a maximum of 0. 022 radians (1. 30) for wavelengths in the neighborhood of 380
feet and is always least for beam seas.

The figures for the lateral motions (Figures 3. 9 - 3. 16) show a correspond-

ing uniformity with respect to wave heading as regards the variation of the response
amplitudes with wavelength. In addition to showing all responses to be zero for
following or head seas, these figures indicate the following: (1) Sway amplitude
response is at its maximum for beam seas, virtually reaching 1. 0 for A - 300 feet.
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(2) Roll amplitude responsr. is maximal for beam seas, reaching a maximum of
approximately 0. 75 radians (4. 3) for N near 320 feet. (3) Yaw amplitude
response is virtually zero for beam seas and has its maximum values for quar-
tering seas, on either bow or stern, reaching a maximum of 0.01 radians (0. 6)
at +45, for % in the neighborhood of 250 feet.

Figures 3. 17 through 3. 22 show the squares of the six response ampli.
tude operators, for each of the three fixed relative wave heading angles,

= 0 ° , 450, and 90 ° , as a function of the angular wave frequency, (
in radians per second, rather than against the wavelength, ->, , in feet. The above
figures indicate the existence of resonance phenomena for the three rotational
motions (yaw, pitch and roll) responses (in order of increasing sharpness of
resonance), for quartering, following and beam seas, respectively. For heave and
sway with beam seas, the squared responses rise to unity before -A = 800 feet is
reached, as noted previously. As shown in Figure 3. 17 the square of the surge
amplitude response reaches approximately 0. 64 for a following wave of length
800 feet (for which the angular frequency is approximately 0. 5 radians per second).

Figures 3.23 through 3. 28 show the phase lead, Argklj(WA0 E),-E"1
of the sinusoidal time history, f(r)(t), of each of the six motions of the barge in
simple sinusoidal waves, plotted against the wave heading, P , for each of the
eight wavelengths considered. The possible ambiguity of an additive multiple of
3600 (T radians) in the numerical value assigned to an individual phase shift
angle, requires the adoption of certain conventions when describing the variation of
the values of the continuous series of phase shift angles. The intention in preparing
these figures was to reproduce faithfully the variation of the quantity, Arg
as 0 varied while c (or, equivalently, . ) was held fixed. This meant avoiding
introducing any extraneous discontinuities into the curves, and led, in some cases,
to the ordinates on individual curves having a range greater than 360.

It may be seen that the rapid change of phase shift with wave heading
shown would make explicit calculations necessary in some instances at a spacing
smaller than 150 for the values of A , if more accurate phase-shift information
were desired at all wavelengths and wave headings. The curves shown would
appear reasonably smooth in this sense except at the shorter wavelengths. In all
cases, portions of the curves lying between comptited ordinates and considered to
be of doubtful validity, are shown as dashed lines (cf. the graphs for the 800-foot
wavelength in Figures 3. 25 and 3. 28).

Since both the real and imaginary parts of the complex response operator,
considered as a function of the wave heading, P , are even functions for all longi-
tudinal motions and odd functions for all lateral motions, the graphs of the phase-
shift responses for the former motions exhibit symmetry about 0 = 0, while
those for the latter motions exhibit a constant difference of +180 ° between the
ordinates for pairs of values of P equidistant from = 0.
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It is seen once more that the curves for wavelengths of 300-400 feet and
below are less regular in appearance than those for the longer wavelengths. It
is to be expected that for wavelengths which are short relative to the barge length
J260 feet), the actual phase-shift responses of the barge are by nature more com-
plex, while, on the other hand, the suitability of the slender-body theory upon
which the computed phases depend is necessarily more open to question here.

For the longitudinal motions, it is seen that the phase shift exhibits
generally smooth behavior for the longer wavelengths, with the exception of the
rapid, but continuous, transition which occurs, as expected, for waves coming
nearly on the beam (+90"). For these wavelengths, heave response exhibits
virtually zero phase shift for all wave headings, while surge and pitch response
show phase shifts near +90, the ordinates on the latter two curves exchanging
places as they pass near the wave headings, +90.

For the lateral motions, a prominent feature in the graphs is the +180"
discontinuity for direct following (0") or head (+180") waves. Aside from this,
for the longer wavelengths, the phase-shift response for sway motion shows little
variation, remaining near +90" at all headings. Similarly, the phase-shift re-
sponse for roll shows, for the longer wavelengths, a variation which is smooth
in the region between following and head seas; the amount of phase shift approach-
ing 90" in absolute value for following seas and a somewhat smaller absolute value
for head seas, but which increases with the wavelength. The phase shift of the
yaw response exhibits a relatively rapid change of 180" as the wave heading passes
through +90, varying rather slowly around 0* and + 180', which values it
approaches, for following or head seas.

B. Results for Irregular Seas

1.) Energy Spectra and Their Interpretation

The remainder of this chapter describes the results of the applications of
the response amplitude operators to the case of irregular seas as described by
the Neumann spectrum. As mentioned in Chapter 2, the surface elevation at any
instant will be considered to consist of the linear superposition of sinusoidal waves
whose amplitudes and phases vary with a frequency continuum as well as direction.
Linearity and superposition of solutions being assumed properties of the moored
barge system, the motions of the barge resulting from exposure to such a seaway
are found by summing up (for each degree of freedom) the responses to each com-
ponent wave present, taking into account its length and heading by use of the
corresponding response operator and weighting each with the appropriate factor
to account for the amplitude and phase of the wave (cf. Appendix and Chapter 2).
This, however, not being possible, unless both amplitude and phase of each com-
ponent wave are specifiable and known, such a procedure cannot be carried out
for the case of a vessel in wind-generated waves. As a consequence of the lack
of phase specification, only quantities which are independent of the phases of the
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individual components of the seaway can be calculated. These include the proba-
bilities of the occurrence of various events and average values derived from such
probabilistic considerations. It may be noted that it is the surface elevation
which is attributed a random nature in this model. The response operators for
the vessel nonetheless specify the amplitude ratio and the phase shift between each
sinusoidal surface component and the corresponding component of the same fre-
quency in the ship-motion time histories. However, if the phase of one is random,
that of the other will likewise be random, though the amplitudes of both may be
certain and known. Thus, an individual ship-motion time history is characterized
by randomness -- though its phase differences from those of single sinusoidal
components of the surface elevation and possibly from those of other ship-motion
time histories may be known.

The assumption of the Gaussian model for the surface elevation and by
linearity, for the barge motions as well, allows a very large number of inferences
to be drawn. One, mentioned in Chapter 2, is that if the ordinates on any one
time-history curve, say the i-th, filt), have a one-dimensional Gaussian distri-
bution, and if measured from their mean, the totality of information available for
describing them individually is contained in a single parameter, their root-mean-
square value, k i. With knowledge of this value and the Gaussian cumulative pro-
bability distribution function (Figure 2. 1), the probability of the instantaneous
ordinate lying within any specified interval of interest may be determined. In
particular, the probability occurrence of values relatively far (high or low) from
the mean may be found. Further properties of the multidimensional Gaussian dis-
tribution combined with the linearity of the system, allow the determination of the
distribution of instantaneous amplitudes on the time-history curve. Whereas the
r. m. s. value is determined solely by the area under the spectral energy density
curve -- i. e., its moment of order zero; moments of higher order, if they exist,
yield additional information about the time history, including the complete proba-
bility distribution of the heights of the peaks on the time-history curve (cf. Figure
2. Z). The latter is approximated, and with increasing accuracy, by the distribu-
tion of the instantaneous amplitude (which is the absolute value of the instantaneous
complex-value envelope* to the curve (cf. Appendix) as the relative bandwidth of
the spectral energy distribution tends to zero. In any case, the average value of
the amplitudes of the oscillations on the time-history curve for a quantity of in-
terest or that of a specified fraction of the largest of such amplitude (such as the
so-called significant wave height), may be found (cf. Appendix), though, if not
sufficiently narrow band**, the knowledge of one additional moment is required.
Finally, the expected value of the maximum such amplitude occurring among a
given number of such oscillations may be estimated (cf. Figure 2. 3). Examples
of the information contained in the energy spectrum (and in its moments, speci-
fically) have been given in Chapter 2.

*See Cht. 5*(1for definition and discussion.

**See Table 2 (-,)
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As pointed out earlier, the energy spectrum for the surface elevation, a
spectrum depending both upon wavelength and wave direction, will determine, for
a given vessel, the distribution of the spectral energy of each of its motions.
The directional Neumann spectral energy density function, AZ(co,(,, ), for the sur-
face elevation, '1 (t), is specified by the following expression:

where c = 51. 5 ft./sec. 2, vw is the wind speed in ft. /sec. , and P. is the pre-
dominant wind direction. It is understood that the spectral energy density is zero
except for wave directions confined to a half-circle symmetrically situated about
the predominant wind direction. The integration,

• V,

yields twice the square of the r. m. s, value of the surface elevation at any point,
i.e. E, = Zt1 , where T, 1 is variance of the surface elevation time history.

In particular, the spectral energy density function, A?(co), of h (t) may
be seen to be,

•C "- To o ~.
T...

since, by definition of the eneigy-density spectrum, A2 (cu), we must have:

0o

For convenience, we shall refer to the quantity, 7"t " E'- , as the total
spectral energy (though strictly its analo is power) for the time history fi(t), and
in practice we shall replace A 2 (co) and A (w,p ) by A2 (w )/Z, and A?((&i, )/Z, re-
spectively, in order to obtain variances and covariances directly from integration
over the interval (0, + 00).

In the present study the angle for the predominant wind direction was taken
to be (So = 0, and a variable barge heading angle, 0 , introduced to allow for
the relative heading of barge to wind. The relationships of the wind direction, the
wave heading, and the barge heading are shown in the sketch below, together with
the difference angle Ow - (SB representing the wave heading relative to the barge
heading. Also shown in this sketch are the conventions made use of later for the
designation of the forces in the mooring cables and the azimuth angle for the boom
used to lower loads from the barge.
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BARGE H4EADINGL-2 (RELATIVE To

PREDOMINANT WIND)

The energy spectrum for I (t) was used in the form of a spectral energy
density with respect to wave length, rather than frequency, since the barge-
motion response operators were evaluated at equally-spaced values of =ZAg/CoL

The resulting spectral energy density becomes proportional to , e
where a = 9/rV , and for a given barge heading, /6'B' the spectrafeslty (A-density)
for the i-thbarge motion becomes proportional to1/ ./1 a A 2 z

" de- cos ,8v) JTrq0XA&AB)i
where the angleJ, used as the second argument of the response operator must now
be expressed in terms of the wave heading //w" After evaluating this integral , to
convert it back to an W- density, it is necessary only to multiply it by the absolute
value of the rate of change of A , with respect to W , namely Id\/u .I = 4rg/j3 .

The members of the family of Neumann spectral energy density functions, A2

(W), with respect to wj, for the surface elevation ql (t), are shown in Figure 3. Z9
for the three wind speeds used in the present study. (For a graphical representation
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of the corresponding energy density with respect to A and the reciprocal of the

derivative dw/dA ,cf. Fig. 5. 2) It is seen that for the higher sea states which corres-

pond to higher wind speeds, a larger fraction of the energy appears at the lower

frequencies (longer wave lengths), the spoctral density curve, plotted versus W

being relatively flat for the lowest of the three 2ea states considered. Generally

speaking, the directional Neumani spectrum, A (wf), though somewhat special in

form, as will be seen later, furnishes a useful concrete example for studies of the

effect of confused seas, in which numerical results are required.

Figures 3. 30 and 3.31 show the distribution of the spectral energy plotted

against the angular frequency w, for a selected set of barge headings, for each of the

six barge motions in a sea state 5. (Note that/s = 0' corresponds to a downwind

barge heading. ) The relatively close agreement between the left-hand portion of the

surface-elevation spectral energy density curve for the State 5 sea, and the corres-

ponding portion of the curves for the translational motions, (particularly heave and

sway - cf. Figures 3.17, 3.18 and 3. 20) is a reflection of the fact that the values of

the response amplitude operators for these motions are close to unity for long waves

for these barge headings.

The spectral energy density curves for the rotational motions in Sea State 5,

considered in the order yaw, roll and pitch, are characterized by increasingly narrow

band widths. This might be expected in view of the relative locations of the maxima

on the response curves for these three motions, and the fact that in the State 5 sea

the maximum spectral energy density occurs near the 400-foot wave length, which

is closer to the location of the peak for pitch than that for roll.

It may be pointed out that the information generated in the present study would

enable the presentation of a set of 6 x 72 = 432 spectral energy curves (not discounting

redundancies) for individual ship motions, including those shown in Figures 3. 30 and

3. 31. For any one of the set of 7Z windspeed, barge heading combinations used in the

computations, an intuitive idea of the composition of any one of the six corresponding

energy spectra for the barge motions may be obtained by visualizing for each wave

length the formation of the corresponding definite integral, taken over the angleWr.

To accomplish this, one imagines replacing the curve for the relevant response

amplitude operator (taken from Figures 3.1 through 3.16) by the curve for the square

of this operator, sliding along it the curve plotted for the Neumann directional function

cos 2 6 = 1/2 + 1/2 cos 28 , multiplyinig together the ordinates of the two curves, and

estimating the area under the portioi of the resulting product curve corresponding to

the interval of values of I centered at ( -A/B) and of length 1800. It is apparent that the

effect of any other appropriate hypothetical directional function may be examined in the

same manner, by its employment in the place of the cosd function.

As an illustration of the information obtainable from the spectral energy density

function, for an arbitrary time history function, an example based upon the heave

motion spectrum (Sea State 5, cross-wind barge heading) in Figure 3. 30 has been pre-

pared, and the results shown in Table 2.

The information selected for presentation here includes the specification of all

those parameters necessary to determine completely the probability distributions of

the following time-varying quantities associated with the heave time-history curve:

ordinate, instantaneous amplitude,inistantaneous, frequency and phase, peak heights
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above (or equivalently, depths below) the mean ordinate. Also given are the mean
values for the number of zero crossings of the curve itself or of its slope. It is to be
noted that the parameters required, for the information being presented consist solely
of four moments of the heaving motion energy spectrum. Two of these were routinely
computed during the present study. The spectral mo) ents involved are given by the
expression, Mr=£d WteJ (W)ow I p 0,I,2,4, where VVIL) is the spectral energy density
for heave under those conditions. In terms of the wave length, A , we have

0 1P.+ frr/Z
tA A (2-,rg/A) e I cos I Wh/918 = +go

For comparison with the results calculated for the heave record in Sea State 5,

the corresponding results for the surface-elevation time history, 17 (L) , itself are
given in Table 2 on the following page for the same sea state.

It has been seen earlier (Figure 3.18) that the heave response operator for the
moored barge system corresponds to a filter acting on the surface elevation time
history, discriminating against the high frequencies and which thus appear considerably
reduced in value in the heaving motion time history. From Table Z, the total energy,

S?-, in the surface elevation time history is seen to be reduced, in the process of

being converted into heaving motion, by a factor of nearly two. The change effected in
the shape of the energy spectrum is illustrated by comparing the values of each
of two dimensionless parameters, J. , (relative spectral bandwidth) and I/o01
(coefficient of correlation between ordinate and second derivative). These are
significantly modified - - from +0. 422 to +0. 224 and from +0. 577 to +0. 907
respectively. The corresponding marked change in the appearance of the time-
history record is reflected by the reduction in the proportion of negative maxima

(peaks) (P ) by a factor of more than four and by the reduction in the proportion
of the time the instantaneous frequency is negative (P.) by a factor of more than

three.

It will be noted that the total spectral energy affects the mean value of

the instantaneous amplitude, in direct proportion to its square root. However,
it may also be seen that the mean peak height, M=(Tr/Z)N(-p)Cr0 for the heaving
motion, despite the reduction by a factor of nearly two in the total spectral
energy, exceeds the mean peak height for the surface elevation by over 15%.
This is due to the compensating efl-ct of the change in the value of 1/0 1 between
the two time histories, which more than offsets the change in the value of the

r. m. s. ordinate, r.
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The effect of the value of /0,, on the form of the distribution of peak
heights may be seen from Figure 2. 2. Three of these distributions of particular
interest here are those for the values, 19,.= -,co , -0. 577 and -0. 907. The
first of these corresponds to the frequently-employed narrow-band spectral model
'(for which the relative spectral bandwidth, 6.= ( ), while the last two follow
from actual conditions assumed in the present study, for the spectral distribution
of sea-surface elevation and barge heaving motion, respectively.

As an example, the percentage of peak heights between 1. 5 feet and 2. 5
feet is found in the real two cases to be 61% - 46% = 15% for surface elevation,
and 67% - 38% = Z9% for heaving (by entering with /o = -0. 577 and with the
ordinates 2.5- . 1.0 and L - = - 0.6 and with /4, =-0. 907 and the
ordinates 2.5 /( = 2,5/ ,, 13 = 1.38 and /,5 /TFz = 5/// = 0.8Z8).
Had both surface elevation and heave been assumed to have narrow band spectra
(i. e. = -1. 0) the corresponding ideal fractions of peak heights between
1. 5 feet and 2. 5 feet would have been 0. 24 and 0. 30 respectively. It is clear that,
except in the region of the larger peak heights, the three distributions show
significant differences. This reflects the fact that the average values of envelope
(instantaneous amplitudes or wave heights), often given must be interpreted with
care for time histories associated with the Neumann spectrum model, since the
value of the parameter, /,O, , is often far from -1. 0. As the present example
for the barge heaving motion shows, one time history having considerably less
total spectral energy than a second time history, may, due to the different manner
in which this energy is distributed, have a peak-height distribution agreeing more
closely with that commonly attributed to the second than the latter's own peak
height distribution.

2) Root-mean- square Values and Total Energy

Figures 3. 32 and 3. 33 show, for each of the six barge motions, the variation

of total spectral energy with barge heading, for each of the three sea states considered.
The ordinate plotted for each of the curves is the r. m. s. , value, C7'j , for the
time history of the barge motion represented. Again, it will be convenient to refer
to the variance of the time history function, Fi(t), namely 7 21 as the total energy
for the time-history function. The r. m. s. value of any time-history function is
therefore the square root of its total energy (assuming, here, as always, the mean
value of the time-history function to be zero).

In these two figures, the actual r. m. s. values of the motions have sig-
nificance in themselves, indicating the total energy present; the indicated range
between the minimum r. m. s. value attainable and the maximum r. m. s. value
encountered as the barge heading is varied is of perhaps more interest for practical
operations. Examination of the figures reveals that the energy in certain sets of
barge motions may be considerable and, simultaneously, reduced to their minimum
values by the proper selection of the barge heading relative to the wind. For
example, for each sea state the r. m. s. values of heave, sway) and roll reach, their
maximum and minimum values for crosswind (J90° ) and either downwind (0 ° ) or
upwind (±180*) barge headings respectively. In the case of roll, the minimum energy
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occurring for the downwind heading appears to be somewhat smaller than that for the
upwind heading. The ratio of the maximum to the minimum value for the higher sea
states is approximately 1. 5 for heave, 2. 0 for sway, and somewhat larger for roll.
Since these ratios also describe the relative size of the instantaneous values of
each of these ship motions which are located at any given percentage point on the
normal cumulative probability distribution curve (Figure 2. 1), as well as the relative
size of the average instantaneous amplitudes and the approximate value of the
expected maximum amplitude occurring among a given number of oscillations,
the significance of the r. m. s. value is apparent.

Thus in the case of sway, for example, the change is heading of 90* in a
State 5 Sea results in a change in r. m. s. value of the sway motion from approximately
(Y = 1.65 to Y = 0.8. Referring to Figure 2.1, it is seen that the value

of the instantaneous sway corresponding to the 99th percentile in its probability
distribution (i. e. , exceeded only 1% of the time) changes from 4. 0 feet to 2. 0 feet.
Similarly, reference to Figure 2. 2 shows that the 99th percentile in the distribution
of the instantaneous amplitude changes from (3. 0) (1. 65) = 4. 95 feet to (3. 0) (0. 8)
2. 40 feet, while the mean instantaneous amplitude changes from 1. 25 (1. 65) = 2. 06
feet to 1. 25 (0.8) = 1. 00 feet. Finally, reference to Figure 1. 3 shows that over a
duratibn of time during which ZOO oscillation occur, the expected (average)
value of the maximum oscillation amplitude will change from 3.42 (1. 65) = 5. 64 feet to
3. 42 (0. 8) = 2. 74 feet (for 100 oscillations, these expected maximum values
are 3.22 (1. 65) = 5. 31 feet and 3.22 (0.8) = 2. 58 feet).

The results for the three remaining barge motions shown in Figures 3. 32
and 3. 33, show less relative change in total energy with barge heading. Surge
and pitch show maximum r. m. s. values for upwind and downwind headings, and
minimum values for crosswind (+900) headings. Total yaw energy is least variable,
showing minima for upwind and downwind headings and somewhat broad and lov
maxima in the vicinity of headings of + 750 to the wind.
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4. LOWERING-LINE DISPLACEMENTS, LINE TENSION AND LOAD ACCELERATIONS

AND MOORING EFFECTS

1. Theoretical considerations

The lowering line displacements are related kinematically to the body mo-
tions, and hence they are relatively simple to determine once the different methods
of lowering loads are specified in this study, viz. center-lowered loads and boom-
lowered loads. Center-lowered loads, as the name indicates, are lowered through
some sort of opening through the ship's keel, and it is assumed that this is done at
just about amidships. The instantaneous displacement vector components of the
load and lowering line are sx, *y and s z and are then given by simple geometry as

5x  = XOx

ay y + IKG5 (4.1)

Sz = z

where x, y, z, and 0are the instantaneous ship motions, surge, sway, heave, and
roll, respectively, and KG = 15. 1 feet is the vertical distance between the center of
gravity and the keel (see the sketch below.
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The tension, T, in the lowering line is given by the relation

T -5 " W z
g g

where the dots denote time rate of change, Wf is the weight of the load, g is the
acceleration due to gravity, and only vertical effects are considered to effect
the tension. At rest,

T = To = Wj

so that upon representing the tension as

T = T + T' W + T',

where T' is the tension change due to dynamical effects, one obtains

1 z (4.2)

W g

Thus, the tension variation due to the dynamics of the ship motion is directly
related to the vertical acceleration of the load, and it is also proportional to the
weight of the load, or equivalently, to its mass, measured in slugs.

In the derivation of the formulas given above, it is assumed that the tra-
jectory of the load attached to the line is such that at each instant it is on the ver-
tical line through the point of attachment of the lowering line to the barge. It is
also assumed that the elastic effects of the lowering lines may be neglected, the
only dynamic influences considered being those due to the ship motions. As for
lateral forces, other than those directly induced by the barge, it is known that there
are resisting forces acting on the line (length arbitrary here) and also on the load
(shape and size arbitrary). However, the neglect of these forces (necessitated by
the inability to calculate them precisely for all possible combinations) results in
the displacements given in Equation (4. 1) being conservative estimates (upper
limits) of the expected load motions. The neglect of elastic effects in the lowering
line appears to be a fairly safe assumption, since the major influence would occur
only if the wave frequencies excited the natural frequency of wave propagation in
the lowering line. In view of the lack of specification of the line's physical charac-
teristics, as well as the expectation of wave-propagation frequencies out of the
range of interest in the present problem, it is believed that the tensions and
accelerations are adequately represented by Equation (4. 2).

For boom-lowered loads, the situation may be visualized by reference to the
accompanying sketch,
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STERN BOW

where the boom of length k is elevated at an anglea . An appropriate value for
the relevant horizontal projection of the boom length ( Jcosa' ) is considered, for
computational purposes in the present case of a 260 ft. length barge, to be 150 ft.
As shown below, the boom is also oriented horizontally at an azimuth angle Y I
measured from the bow, positive in the counterclockwige sense, viewed from above.

x
STERN Bow

The load and lowering-line displacements about their respective equilibrium posi-
tions are given by

a x - (Icosoi) sin

By Y + (.ecosoi) coo 11 (4.3)
y

a z - (Icoso() cosP9+ (cosd) sin.9

and the line tension (fluctuating part), T'', and vertical acceleration are repre-
sented by
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SE_ __ I I + f COSO('(S In~ 69 (4.4)

where 0 1) , and 0are the rotational barge motions, roll, pitch and yaw, re-
spectively. The superscript ( denotes the boom azimuth angle.

These quantities are derived on the same basis as those for center-lowered
loads, it being assumed that the boom pivots about the ship CG. The instantaneous
magnitudes of these quantities thus appear aslinear combinations of the instan-
taneous ship-motion solutions.

For the mooring system, the fluctuating parts of each of the four mooring
cable tension forces * (each taken to be positive when directed toward the barge)
are given by (see Appendix and Figure 4. 8 for nomenclature):

F I  = -4C-oC [-{y-I JF'in"')

F (4.5)

F4  =+C Ixco+y(-. Y1 0coL

where C = 1250 lb./ft., 4 = 60, L = 260 ft., and x, y, and are the ship
motions of surge, sway and yaw. The effect of the mooring system on the barge,
already taken into account (see Appendix) by the presence of the terms represent-
ing the net induced forces on the vessel in the direction of the x (fore-aft) and y
(port-starboard) coordinate axes and the term representing the net induced yawing
moment may be seen by displaying these three terms, viz.,

Xm -kx•x

Ym = -ky" y
Nm - -k '9) (4.6)

where kx = 1250 lb. /ft.
k = 3750. 16 lb./ft.

k = 633. 75 x 105 lb. -ft. /rad.

*It should be noted that the constraints that can be offered by the mooring lines
through their elasticity to those ship motions having large hydrostatic restoring
forces (heave, pitch and roll) is negligibly small in comparison with these forces.
Thus, the moorings are taken into account only for those motions of the ship in
which they can make a significant change. The expressions for the mooring cable
tensions appearing in the text above have this viewpoint since there the effect on
the motion of the barge is of primary interest. Consequently, should one be con-
cerned instead with the effect that the ship can exert on its moorings, forces due
to heave, pitch and roll would be considered in addition to the forces Fl, F 2 , F 3
and F4 considered above.
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It is seen that both sets of quantities associated with the mooring system
are simple linear combinations of the barge motions themselves. In fact, the

r. m. s. values of the effects induced on the barge, given above in Equation (4. 6)
may be obtained from the corresponding quantities for the barge motions bya
mere change in scale in the graphs shown in Figures 3. 32 and 3. 33.

2. Results for Individual Time Histories for Load and Mooring Quantities

A. Energy Spectra and Their Interpretation

Presented here, as in the preceding chapter, are the results obtained
which describe individually the time histories under consideration. Discussion of

the simultaneous relationships between the various time histories will appear in

the following chapter.

Representative examples of calculated spectra-energy density functions for
the case of the center-lowered load are presented in this report for two sea states

(i. e., wind speeds) and two barge headings relative to the predominant wind direc-

tion. The presentation of the results of calculations comprehending the entire set
of energy spectra of possib.e interest for the load and mooring variables was not
deemed feasible in view of the large number of such spectra involved, although
any particular one of interest may be readily obtained from the available computed

results. The space required for their presentation, alone, would have been a de-

ciding factor here as may be seen when it is recalled that for each of 3 x 24 = 72
environmental conditions for the mooring system and the center-lowered load,
there are under consideration in this study seven time histories (viz. F 1 , F 2 , F 3 ,

F4, Xm, Ym' Nm) for the mooring systems and five for the load (viz. Sx, s y, s z ,

'z, T'). For the boom-lowered load, the consideration of twenty-four boom azi-
muth angles leads to a set of 3 x 24 x 24 = 1728 environmental conditions under
each of which there are five quantities to be considered (viz. s , sy Sz, SzI T').

To be sure, out of this set there exist some instances of redundancy or simple
proportionality, but the number of discrete cases is still prohibitively large to

exhibit in full.

The spectral-energy density functions shown for the load were calculated
from those of the fundamental set of cross-spectral energy-density functions,

namely, those of the six barge motions. Since the time histories of the load and
mooring quantities are linear combinations of those for the motions of the barge

and their second-order time derivatives,* response amplitude operators for the
former may be obtained by forming appropriate linear combinations of the com-

plex response operators, Ti, , for the barge motions, and calculating their

*Note that if the complex response operator for a ship motion is Ti (ij3) then

the complex response operator for its time derivative of order p is

i U-) )(, 3) and the squared response amplitude operator then becomes
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squared absolute values. However, to avoid the inefficiency of performing an un-
necessarily large number of numerical integrations, a general theorem in the theory
of vector stochastic processes, providing an expression for the cross-covariance
matrix for sets of random time histories which are linear combinations of a given
set of random time histories was employed. In this way, certain spectral-energy
density functions for the time-history functions associated with the load were ob-
tained by hand calculation and all of the relevant r. m. s. values for the load and
mooring systems were obtained by use of a high-speed computer.

A set of spectral-energy density functions for the case of a center-lowered
load is illustrated in Figure 4. 1. These consist of energy spectra for (1) the added-
dynamic tension in the load-lowering line (or, equivalently, the vertical accelera-
tion of the load) in Sea States 3 and 5, for one cross-wind barge heading (58 = +900)
and (2) the port-starboard component of the displacement vector for the load in a
State 5 sea for the barge headings, 35 = 0 ° (downwind) and .?L = + 90. (In the
latter case, either cross-wind heading yields the same energy spectrum.) These
examples encompass a rather wide range of spectral types, from the point of view
of total spectral energy, location of the mean frequency of the spectra-energy dis-
tribution, absolute and relative spectral bandwidth, and general spectral shape.

For the case of a cross-wind barge heading, it is apparent that the port-
starboard load-displacement energy spectrum shown in Figure 4. 1 corresponds to
a load-displacement time history which is relatively regular in appearance, ex-
hibiting oscillations of relatively constant amplitude and duration, lasting in the
neighborhood of 2 IT /0. 75 = 8.4 seconds each; the peaks on the curve would be ex-
pected to lie on the evelope to the curve relatively often, while the heights of the
peaks would be expected to follow the Rayleigh distribution ( fP = -1.0) relatively
closely. For example, from the estimates made immediately below, one will be
led to expect that 99. 9% of the peaks will not exceed approximately twice 3. 7 ft.,
or 7. 4 feet in height. The area representing the total spectral. energy may be
visually estimated to be slightly more than 1/2(0. 5)(16) = 4 ft. 2 yielding an r. m. s.
value for the load motion of approximately two feet (in Figure 4. 2, below, from
which this r. m. s. value for sy at ' = 90 ° , may be read directly from the graph,
it is seen to be between 2. 10 and 2. 15 feet). Thus, without calculating any mo-
ments of this spectrum, it may be inferred with some confidence that the mean
value of the amplitudes of the oscillations of the lateral load displacement com-
ponent, syo will be close to a 2. 5 feet while the average Of
the highest one-third, H 1 / 3 , willie approximately 2.0G-sy = 1.41 Es = 2(2.0) = 4.0
ft. On this basis, the expected value of the maximum amplitude of oscillation to
be encountered during an operation lasting 70 minutes (corresponding to approxi-
mately 70 x 60/8. 4 = 500 waves of average period 8. 4 seconds) would be, from
Figure 2. 3, approximately 3. 67(2. 0) = 7. 3 feet. During a shorter operation of
seven minutes (=420 seconds) duration, the same graph indicates an expected value
for the maximum amplitude of oscillation of approximately 3. 00(2. 0) = 6. 00 feet.
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As far as instantaneous values of the port-starboard load displacement time history
are concerned, from Figure 2. 1 it is seen that since G- s = 2. 0, the displacement
toward port will exceed 6.0 feet only (100.00% - 99. 90%)y= 0. 10% = 1/1000 of the
time, while the absolute value of the displacement will exceed 6. 0 feet twice as
often, namely, about 1/500 of the time.

A similar discussion for the other three time histories whose energy spectra,
shown in Figure 4. 1, are visibly much further from having a small relative band-
width, could be given provided one or two additional parameters were calculated
directly from the spectral curves, as was illustrated in the discussion of the heaving
motion in the preceding chapter. In the example shown for the added-dynamic line
tension or vertical load acceleration, one may arrive at the estimates

l = 0.9 rad. /sec. , : = 0.2 rad. /sec. and the relative bandwidth, -

= 0. 22 with PA = -0. 9. Similarly, for the highly peaked narrow spectrum in
the lower half of Figure 4. 1, we might reasonably assume Pw = 0.75 rad. /sec. .

= 0. 1, and JPo = -0. 95. On the other hand, for the broad, low spectrum in the
upper half of the figure, reasonable values might be/p= 1. 1 rad. /sc., G-cj-- 1.0
rad. /sec., and P. = -0. 2, but in this case the values should not be considered to
be very accurate, since the value of L& = 0. 91 here. is so large. However, in any
case, a certain amount of insight is obtained as to the appearance of the time-
history curve when S,(whose estimate here would seem likely not to be too much
in error) is large. For example, if it is recalled that 1/2(1 + p,) is the fraction
of peaks occurring below the mean ordinate level, it is not difficult to see that
since a situation in which Po, = -0. Z corresponds to 40% of the peaks being of this
kind, it is very likely that a graph of the time history for the added-dynamic line-
tension in a Sea State 3 with P, = +90" would be rather irregular in appearance,
and the heights of the peaks would fall considerably below those for aRayleigh-
distributed quantity.

B. Root-mean-square values and total energy for lowered loads

This section presents the r. m. s. values, or, equivalently, the total ener-
gy, for each sea state and barge heading, for each of the quantities of interest re-
lating to the load-lowering operation and the mooring system. In general, as
mentioned earlier, these quantities were computed in the form of linear combina-
tions of the cross-covariance functions for the six ship-motion time histories, and
(for accelerations) for their second-order time derivatives. Some insight into the
manner of variation with barge heading of any one of these r. m. s. values may be
obtained by considering the fact that its variation depends not only upon how the
r. m. s. values of the component ship motions vary, but also, upon how the co-
variances between them vary. The results which show the variation of the r. m. s.
values have been presented rather completely for barge headings at 15 ° increments
in the preceding chapter. The results showing how the covariances vary with barge
heading are presented in somewhat less detail in the following chapter.
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For example, the lateral displacement of the center-lowered load, sy, is
the weighted sum, y + I'\(:., , of two component ship motions, where
IKGI = 15. 1 feet. At any barge heading, its r. m. s. value, 6's , is given by
-$=2 + 2 ,KGIP - where 0 , G and arX the r.m.s. values

of the swayy and roll time histories and the coefficient of correlation between them,
respectively, Since the extreme values of Py are -1 and +1, the %alue of Ts. will
be seen to be confined between 1, - 15. 1 ToI and + 15. 1 cTj For the intermediate
case, P = 0, the r. m. s. value for the lateral displacement is given by

2. + IK G "G. The general expression for 0 =(T+ IKGIO
= I+(.GJ -A +IKTcro pO may be interpreted in terms of the law of cosines for plane
triangles as illustrated by the sketch below, showing the effect of coefficient
of correlation, Fl .

Of the curves in Figure 4. 2, which show, for a center-lowered load, the r. m. s.
values of sx, s , s z -- those for 5 y exhibit the highest values. The r. m. s. value
for sy attains iLs maximum value for /3 = +90', as do the r. m. s. values of y
and 0 individually (cf. Figures 3. 32 and 3. 33). However, the minimum r. m. s.
values for both sy and y occur at P6 = 180" (upwind heading), whereas the minimum
r. m. s. value for 0 occurs at i s = 0 (downwind heading). The shift in the location
of the minimum r. m. s. value here is explainable by examining the manner in which
the correlation coefficient between the two motions vary with the barge heading.
Thus, it may be confirmed from the information shown below in Figure 5. 9 that
the latter coefficient is positive for / 3 , = 0 and negative for (3, = 180*, the
effect of the latter negative value on the r. m. s. value of sy being to decrease it
by more than enough to compensate for the effect of the larger value of the r. m. s.
value of 0 for /3,3 = 180. The prediction of such effects for all the motions of
interest is not entirely simple. However, the figures shown in the present chapter
indicate the barge headings for which minimum and maximum r. m. s. values occur
for the time histories relating to the center-lowered load.

The curves for center-lowered loads in Figure 4. 2 are seen to increase in
height, as expected, with sea state. It may be noted that the curves shown for

sxand s. are, in view of Equations 4. 1, exact replications of those given in Figure
3. 32 for x and z, which have been replotted here for convenience. The curve for
the vertical load displacement, sz, is similar to that for sy, showing equal maxima
for cross-wind headings and unequal minima for downwind and upwind barge headings;
the minima for s z are more nearly equal to each other than are those for s y. The
ordinates on the curves for the fore-aft load displacement, s x , are uniformly lower
than those for sy and s z , showing equal minima for the two cross-wind headings and
nearly equal minima for upwind and downwind headings, except in the lowest of
the sea states considered, in which case the ordinates are relatively low and the

amount of variation with barge heading is quite small.
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The r. m. s. values of the vertical component of the acceleration, 9z
(in ft/sec2 ) of the center-lowered load and the added dynamic tension, T'
(in pounds of force per unit load mass, measured in slugs) in the lowering line
are shown as a function of barge heading in Figure 4. 3 for each of the three sea
states. These curves are similar in appearance to the curves for the r. m. s.
value of s z (and hence of the heave, z, itself), exhibiting equal maxima for cross-
wind barge headings and unequal minima for up- and down-wind barge headings.
The value of the ordinate for a given barge heading on any one curve for 16 (or TI)
is the same as the moment of the spectral energy density function for the
corresponding heaving-motion time-history. In forming the fourth moment, all
ordinates are first multiplied by w 4 before finding the area under the curve.
Thus, it is apparent that as the sea state increases and hence (in the Neumann
model) the frequency at which the mean spectral energy appears decreases, the
curves for 'Az become progressively lower relative to those for z. The curves
for ' z for the three sea states considered are more closely spaced than are
those for z. The r. m. s. value of the vertical acceleration of the load for the
range of sea states represented here is less sensitive to sea state than that of
the vertical displacement, itself, of the load.

C. EFFECTS OF BOOM AZIMUTH AND BARGE HEADING ON A BOOM-LOWERED
LOAD IN A SEAWAY

The results in this section show the effect on the load-lowering operation of
using various combinations of boom angles and barge headings. For boom-lowered
loads, Figures 4. 4 through 4. 7 below show the r. m. s. values for the three
rectangular components of the load displacement vector, for the vertical component
of the acceleration of the load as well as the added-dynamic tension in the lowering
line. The r. m. s. values were obtained as before, by operating upon the set of
covariance functions (evaluated for zero time lag) for the six ship motions themselves,
including the variable boom azimuth angle, , in the computations in accordance
with equations (4. 3) and (4.4).

In Figure 4. 4 is shown for each sea state an example of varying the boom
azimuth angle, W , on the r. m. s. value of the vertical load displacement com-
ponent, szv , for two particular fixed barge headings. The two barge headings
were sejected as those 15* on either side of the downwind barge heading, for
there sz6 has a relatively large r. m. s. value, no matter what the boom azimuth
angle may be. It will be noted that the effect is relatively small for Sea State 3,
while for Sea States 4 and 5 there is a considerable increase in the r. m. s. values
themselves as well as in their variation with the angular position of the boom. For
example, in a State 5 sea, the r. m. s. value of the vertical load displacement may
beas large as 7. 0 feet (for a boom azimuth angle of + 105') or as small as 4. 6 feet
(for a boom angle of + 165*). From Figure 2. 1, it is seen that instantaneous vertical
displacements of over 17.0 feet from its mean position would be expected to occur
approximately 2(100. 0 - 99. 5) = 1. 0% of the time in the former case, compared
to approximately 2 (100. 0 - 99. 9) = 0.2 % of the time in the latter case.
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The high-speed computer was programmed to calculate in each case the
r. m. s. values for the time-histories of each of the quantities of interest

(viz. s x , s , , , z or TIT ) for each of a set of boom angles covering the
complete azimuth circle, using an increment of 150 in the latter. From these
computed results, the boom azimuth angle yielding the minimum r. m. s. value for
each of the four essential quantities could be estimated, as well as the r. m. s.
value resulting from the use of this boom angle, in each sea-state and barge-
heading. The results showed that the optimum boom azimuth angle, 7 , (measured
relative to the barge, counter-clockwise from the direction of the bow) which
minimized the r. m. s. values of any given one of the time histories of interest,
was in general nearly independent of both barge heading and sea state.

The values found for the optimizing value of the boom azimuth angle, ",
are shown for each time history and in each case, together with the resulting
minimum r. m. s. value for the time history concerned, in Figures 4. 5 arid 4. 6.
The exceptional cases in which the optimum boom angle varies with the barge heading
are noted bn the graphs in these figures and occur only for the vertical components
of the load displacement and load acceleration (or added line tension) for the two
higher sea states. Specifically, the optimum boom azimuth angle was found to be
0* or 180 ° for s. , + 90 ° for sy , and 180 ° for both sz and T' , uniformly for
all barge headings relative to the wind, for Sea State 3. In the case of Sea States
4 and 5, the only modification which becomes necessary is that for sz and T'
the optimum boom angle varies away from 180* by amounts up to approximately
15* or 20* when the barge heading angle, A , is within + 90* of the downwind
direction.

In summary, it may be seen that in the lowest sea state considered, the
minimum attainable r. m. s. values (i. e. those resulting from use of the optimum
boom angle) do not vary greatly with the barge heading. However, with increasing
sea state, the barge heading significantly affects the magnitude of the minimum-
attainable r. m. s. values to an increasing degree.

In general, for each of the quantities being considered, the size of the
minimum r. m. s. value attainable by proper boom orientation depends on barge
heading as follows. It is smallest around /, = +90* for both the fore-aft and
the vertical load displacement components, as well as for the vertical load
acceleration component (or added-dynamic line tension). It is largest for these
same three quantities for 8, =0° and &, = 180. For the port-starboard load
displacement component, it is smallest for A& =0" and 180" and largest around

,Bg = f90. The minimum attainable r. m. s. values for the other three load
quantities are largest for /s = 0.

In Sea State 5, the actual minimum-attainable r. m. s. values vary from
'0.5 feet to 0.8 feet for the fore-aft load-displacement component, from 0.8
feet to 1. 7 feet for the port-starboard load-displacement component, from 3. 8
feet to 6. 0 feet for the vertical load-displacement component, and from 2. 28
feet/sec - (or lb/slug) to 2. 98 ft/sec2 (or lb/slug) for the vertical load acceleration
component (or the added dynamic tension in the lowering line). In Sea State 4,
the minimum attainable r. m. s. values vary from 0. 5 feet to 1. 1 feet for the
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port-starboard load displacement component, from 2. 4 to 3. 2 for the vertical
load displacement component, ard from 1. 63 to 2.02 ft/sec2 (or lb/slug) for
the vertical load acceleration component and added dynamic line tension.

As an example of the interpretation of some of these numerical results
for the r. m. s. values attainable, reference to Figure 2. 3 indicates that by
proper orientations of the barge and boom, the expected maximum oscillation
amplitude over a span of 500 oscillations in the port-starboard load displacement
component in a State 5 sea would be reducible from the maximum attainable value
at / = + 90" of 3.67 (1. 7) = 6. Z4 feet to the minimum attainable value at

= 0. of 3. 67 (0. 8) = 2. 94 feet. (Here in each case the optimum boom position
is that corresponding to 7 +90 ° , i.e. directly across the beam of the vessel.)

As an additional illustration of the effect of the boom azimuth angle on
the r. m. s. values associated with the load-lowering operation one may contrast the
results shown in Figures 4. 6 and 4. 7. One sees in the latter figure, for each sea
state and barge heading, the r. m. s. values which would result were the boom
azimuth chosen so as to maximize the vertical load displacements and added
dynamic line tensions. It is seen that this "worst" boom angle changes from
+90 ° (port side) to -90* (starboard side) as the direction of the barge heading
mves across that of the predominant wind. The attainment of r. m. s. values of

nearly 10 ft/sec Z for the vertical load acceleration is seen to be possible in a
Sea State 5.

D. SUPPLEMENTAL DISCUSSION ON THE OPTIMUM BOOM ANGLE

Some discussion of the optimum values for the boom azimuth angle will
next be presented in view of the special nature of the results found concerning
them. In the case of the fore and aft (5s " ) and the port-starboard (sy ) load
displacements, formal explanation is rather easily given. For these time
histories, the expressions for which are given by Equation (4. 3), we have for
a given barge heading and arbitrary boom angle the following formulae for the
squares of the two corresponding r. m. s. values (a-,j and a-,-,

Y

a cX (I o + x s150 + Osoc-S) n
: +

_ ( ,Z I _/-)/0 , with equality just if sinTX " +
X X150a ,

and

= cry +2(150) a-r oy cosf +(150) - 2cosZY

- "} - , , with equality just if cos = - ',5- y
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These results are obtained, as seen, by completing the square in each case and
noting the condition on the azimuth angle, -Y , which makes the square vanish. The
determination of the optimizing value of 7 is seen in each case to require a
knowledge of two r. m. s. values and one coefficient of correlation. These vary
with sea state and barge heading. An a priori guess as to the magnitudes of the
above quantities might result in some confidence that the expressions for the sine
and cosine of the optimum angle were close to zero in each case. Nevertheless,
the high-speed computer program was allowed to generate all of the r. m. s.
values resulting from the use of 15" increments in the boom angle, for each sea-
state and barge-heading combination. These were then available for inspection
and the minimum r. m. s. values as well as the corresponding boom angle could
be immediately picked out to within 15'. In addition, the formulas above for the
optimum boom angles were employed by substituting in the r. m. s. values and
the covariances for Sea State 5, appearing in the computer output, and it was
found that the optimizing value of 7 was somewhat less in absolute value than
3" from 0* or 180' for Sx4, and even closer to +90 ° for sy. Thus, the

optimum values for V appearing on the curves in Figures 4. 5 and 4. 6 would
appear to be given with more accuracy than that nominally assignable to them,
the nearest 15".'

In the case of the vertical load displacement, s z , in Sea State 5, the
minimizing value of 7 was found to shift gradually from + 180" at barge heading
- 180' to a value of approximately - 159' at barge heading T 15* (cf. Figure 4.4)
and to return abruptly to 180' (by symmetry) at barge heading 0.. The situation
regarding the vertical load displacement appeared to be similar in Sea State 4.

A similar behavior was found for the boom azimuth angle minimizing the
r. m. s. value of the vertical load acceleration (or added line tensions) in the two
higher sea states. However, in Sea State 3, the minimizing boom azimuth angle
was consistently 180" (boom over the stern) for both the vertical load displacement
and acceleration.

As an example of results obtained for a 200-ton load lowered in a State 5
sea with a crosswind barge heading and with the optimum boom azimuth angle (here
of 180', -- boom over the stern), the r. m. s. value of the added-dynamic line
tension given by Figure 4.6 is (Z. 38) (200) / 32.2 = 14.8 tons. From Figure 2. 1
it is seen that the downwind force of impact on the bottom would exceed
25. 0 tons approximately 2. 3% of the time, if the instant of impact were allowed to
occur at random. For a center-lowered load under the same conditions, the
r. m. s. value of its acceleration is 1. 17 (200) /32. 2 = 7. 27 tons, and the downward
impact force on the bottom would exceed 14. 3 tons approximately 2. 3% of the
time.

E. MOORING SYSTEM QUANTITIES

The r. m. s. values of the horizontal mooring forces and the yawing moment
induced on the barge are obtainable directly from Figures 3. 30 and 3. 31 in view
of equations 4. 6, since the factor of proportionality in these equations need only be
applied in each case to the r. m. s. value given in these figures. Thus, the'
r. m. s. value of Xm , Ym or Nm (in lbs., lbs. and ft. -lbs. respectively) for any
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given barge heading and wind speed is, respectively, 1250 lbs. /ft, 3750 lbs. /ft.
or 6. 675 x 107 ft. lbs times the r. m. s. value of surge, sway or yaw under the
same conditions. For example, in a Sea State 5, the induced force, Xm, on
the barge will have r. m. s. value of 1250 (0. 8) = 1000 lb. with a downwind barge
heading, while that for Ym with a crosswind barge heading will be 3750 (2.Z) =

8250 lb.

The r. m. s. value of the fluctuating component of the force in each of the
four mooring cables is shown in Figure 4. 8 as a function of barge heading for
each sea state. The four are seen to have nearly the same r. m. s. value for
any particular barge heading in a Sea State 3, the actual values varying between
300 and 600 lb. For a Sea State 4 the range is from 1100 to 1750 lb., the
difference between r. m. s. values for the four fluctuating cable forces being as
much as 150 lb. For Sea State 5, the range is from 1800 to 2700 lb. with
differences in r. m. s. values between cables of 250 lb. In all cases the cable force
r. m. s. values are greatest near crosswind, and least for upwind and downwind,
barge headings.
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5.. CROSS-SPECTRA, PHASE DIFFERENCES AND RELATED RESULTS

The present chapter treats the phenomena of interest when more than one
time history is considered at a time. In contrast to situations for the earlier-
presented material on individual time histories characterizable by energy spectra,
relatively little is readily available in the literature treating in detail the infor-
mation contained in the cross-spectra of a stationary Gaussian vector stochastic
process. The notion of the degree of synchronism between the various ship motions
has occasionally been employed in discussions of theoretical aspects of the behavior
of a ship in an irregular seaway. Some of the relevant problems involved here are
often phrased as questions in terms of phase relations, synchronism, coherence,
coupling, or the degree of correlation or predictability existing among the motions.

The information derivable from the individual energy spectra and the cross
spectrum when these are given for two time-history functions, includes the
complete specification of the joint probability distributions for the ordinates,
measured from their mean values, on the corresponding time-history curves; this
specification is provided by the set of three numbers consisting of two auto-
covariances for the individual time-history functions (obtainable from their energy
spectra) and the (single) cross covariance for the time-history pair (obtainable
from their cross spectrum). From tabulated values of the two-dimensional
Gaussian probability integral, the probability of the joint occurrence of the
ordinates on the two curves below any two given ordinate levels for the two curves
may be found.

In addition to this quite fundamental information, the cross-spectrum con-
tains the complete specification of the parameters for the distribution of the
instantaneous phase difference and amplitude ratio, as well as the difference in
instantaneous frequencies for the two time histories.

Specifically, such information is contained in the moments of the complex-
valued cross-spectral energy density function. rhe following discussion begins
with the consideration of the latter function which is associated with any pair of
time histories.

A. Cross-Spectra and Cross-Covariances

Consider any pair of ship motions r and s whose complex response
operators to the waves, q , areTrq(w,/ ) and Tsq (w',4 ). The complex-
valued cross-spectral energy distribution for that pair is an immediate
generalization of the (auto) spectral energy density function for a single time-
history and is given at any frequency, w , by

(r,) w L

d,4) S d (wOA I'T, (w,,4) T,(,
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where I S(Clv)is the energy spectrum of the surface elevation, 7 , (suitably
normalized so that its integral over-all wave directions, ,/9 I and frequencies,

is the variance, a"i of the surface elevation time history) and such
that the "narrow band" significant wave is Za-q = C2E . Here also,
I =/3-, is the heading of a component wave relative to the barge heading, and
the asterisk denotes the operation of taking the complex conjugate. When s'
this expression is seen to reduce to the spectral energy density function $)
the latter being a special case to which everything to be discussed below applies
(though often in a trivial way).

In the present study the introduction of the Neumann spectrum for the
seaway leads to the following special form for the cross-spectral energy density:

2 l2 f+r l'g CS
= , )

In terms of the wave length, A =Zr /w', the density with respect to A is given
by

~~(A) A c ?'e aA Acos 6wT(,A-i T/ q$')
In the expressions above, it will be noted that the symbols "4" and "T" used
to denote the cross-spectral density and the complex response operator functions
are used indiscriminantly regardless of the arguments of the functions. However,
the intended meaning should be clear, so long as the arguments which undergo
replacement are limited to w and A , it being understood that expressions
containing A are to be integrated with respect to A while expressions denoted
by *"r it) are to be integrated with respect to W . Such an integration over
all A , say, yields complex valued the cross-covariance function P Id given
by -+.,/-

(0 JdA C'EX e cos~g' Tti3 (xW )T( -/

the real part of which is the ordinary coefficient of correlation /0(O) (evaluated
for the time lag value of zero) between the rth and the sth ship motion time-histories
when suitably normalized. Thus,

(r)~ rs5 r, r SIS IVL
S() (0) y(o

In the present study, arguments other than "r =0 for the cross-covariance
(r, S)

function M' Cr) were not employed, and in this sense this is a study of the behavior
of the moored barge at isolated instants. Extension of the scope of the study to
include the relationships between time histories at non-simultaneous instants
would naturally lead to the evaluation of )r"T) for non-zero values of T in certain
cases. One such extension would be the synthesis of examples of sufficient
duration to include several oscillations of the surface elevation and the six
simultaneous barge motions.
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It is apparent that considering the 3x24 = 72 combinations of sea states
V_.) and barge headings ( / ,, ) use for the present study, there are a large

number of complex cross spectral density functions which are of potential
interest. If one considers the ship motions alone, it is seen that in addition
to the 432 pure spectral energy density functions enumerated in Chapter 3,
there are an additional fifteen essentially different proper cross-spectral
energy density functions for each of the 72 environmental conditions. The
set of 30 possible required functions may be halved, since no new information
is obtained by interchanging the order in which the letters r and s appear; it
may be seen that such an interchange results in a function 'Y whose
value for a given N is the complex conjugate of that of -,"

In addition to this set of 15x72=1080 possible cross-spectral energy
density functions for the barge motions themselves under all environmental
conditions, there is the possibility of considering those involving the surface
elevation as well as the load-lowering and mooring systems. Fortunately,
each of these is obtainable by forming linear combinations of the complete
set of cross spectra for the seven fundamental time-history functions (or
their time rates of change) which consists of the six ship motions and the
surface elevation. However, the magnitude of the resulting overall number
of cross spectra of possible interest, together with their general unfamiliarity
to the general reader, suggests that routine calculation of even any sizable
fraction of them would be inappropriate. Should the need for any particular set
of a large number of them become apparent, a minor modification of the
existing high-speed computer program will make them readily available. Those
presented in the present report were obtained by hand calculation, which is a
feasible method,provided a large number of cases are not required.

While it is obvious that a rather large number of the set of possible
cross spectra referred to above, e. g. those involving two boom angles or
barge headings which are distinct, would be of no interest in a problem concerned
with but one boom and one barge, it may be suggested that certain of these would be
relevant in cases where two loads were lowered from one barge or two barges
were to cooperate in lowering a single load (by means of two lowering lines).
In the latter case the spatial separation of the barges would introduce additional
phase shifts and incoherance between the motions, but in a manner capable
of analytical treatment.

Having already treated the energy spectrum case, these spectra may be
considered as available for use in certain kinds of reduction or standardization of
the cross-spectra and to aid in visualizing their structure and the manner in which
they are formed. The latter serves to provide some insight into their meaning
and interpretation, as well as to effect a saving in space required for their
presentation by a condensation of the information contained in these functions.
In addition, the graphs of the reduced cross-spectral densities which may be
plotted present a somewhat more systematic appearance than those which would
have otherwise resulted.

The analogue of the process described in the Chapter 3 for visualizing

the formation of the definite integral defining the spectral energy density function,
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j(-' (,) , (viz, sliding the curve CO- =(I/Z + 1/2 cos ~y)along the curve
for the square of the appropriate response amplitude operator) now involves
applying a set of weights proportional to c-5 -/3 to a set of points in the complete
number plane representing the plot for a fixed /N- of the curve representing the
Hermitian product, H,,,- T/, ((,,. ) -/ )T .. ,/j-), of the complex
response operators, with the angle = - as parameter for the curve.
For this purpose the plots in the complex plane, referred to in Chapter 3, of the
complex response operators-Tr ( /,') and their Hermitian products, when taken
in pairs, are convenient for vizualization purposes; the effect of the directional
symmetry of the wave spectrum and the effect of the barge heading angle may
be seen graphically.

Considering for any Vw and , the value of the ratio,

,,ll, ' i, ;.!/: (Ni ,h

where -'(K) = is the surface elevation spectral density
over . , is seen to be independent of Vw. The following interpretation for
this ratio is apparent. Since)_ 7- =1, this ratio, or relative cross
spectral density for the r-th and s-th ship motions -- relative to the surface
elevation -- is seen to be a weighted sum or integral average of the function
of /= - . represented by the Hermitian product of the complex response
operators, " i,4 '-.- . Furthermore, the function
is non-negative and has total weight'of unity. Consequently, the value of the ratio
must lie within the curve representing !> ) ( ?',, - ) if the latter is everywhere
convex (i. e. contains the internal points of each of its chords) or within the
smallest convex point set containing the curve. As a consequence, the direction
from the origin of the point representing the complex number '(,must
lie within the angle subtended by the figure representing the plot of ' ,yf,)
Hence we see that (7 , (>,/' is a weighted
average with non-negative, unit total weights of .. " '(*,,") = - "',

between min Arg , I maxArg. -i ', iand since

H<,,,. - _., • "j<A>j ,' ~ )
oAItan ma I .a d,;n

Likewise Arg!.L Arg Arg weighted average of
w. r. t. ,s-/j./rlz). Further, if we consider

/,. JJ. (. k / "

and if we set (r,:) /' ' 1 x, ? (/

(c) v,, 5-



the right hand side is the weighted average ofI- (r, :)
(A)

and hence Arg- -A (C) Arg-weighted sum of

Thus, the quantity being averaged over is Itself a weighted average over

/3of T*7 T A
Next, consider:

VWTV

=weighted average of (3(w. r.)t(A) w. r. t

(non-neg., unit total weight)

Hence we have the results (1) the quantity -? = V, >/ ,, (V')
lies in the convex hull of the curve for p in the c ompfex plane;

it is independent of V w and may be converted into F.. ) by

multiplying by -, /( ) and into VW (.$) ( ) by

multiplying by the addiional factor , /- =

= ( the quantityIjJ () heuatiy lies in the '
convex hull of the curve for in' (?'),, n the cmhiex plane, depends upon

Vw, and may be converted into . ( 0 ) by multiplying by /? ) (
which is the total energy in surface-elevation time-history spectrum or wind speed

V w . In Figure 5. 1 is shown a set of cross-spectral energy-density functions for
the three sea states considered and for barge heading zero for the barge motions

of surge and heave, i.e. , (,I Z,( ,\ ). plotted as a curve in the complex
number plane with / as a parai efer. The increase in the size of the curves
with increasing sea state is apparent; these are absolute (i. e. , are not relative)

cross spectra. Plotting on logarithmic scales would have been required to show

on the same graph the variation of the cross-spectral energy density for

Sea State 3. As noted on the plot shown, the curve appears to be located entirely
at the origin. Interpolation between the points, computed for values of A which
are multiples of 100 ft., is not justified in most cases, as is indicated by the

dashed portions of the curves. The points for the longer' wave lengths indicate

that the weighted mean of the Hermitian product, Tx". ( ) ., (A'. ),
has an angle which is near +90* for the long wave lengths falling off to approximately
+45* at 300 feet, and for the estimated wave lengths rising again to the vicinity

of +90% These variations of the angle by which heave leads surge is reflected
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in the graphs of Figures 3. 23, 3.25 and 3. 25, where heave for wave headings be-
tween + 90* relative to the barge (b =Ofor the graphs in Figure 5. 1) is seen to lead
surge by nearly 90* at the long wave lengths, the amount decreasing quite appreciably
at 400' and very much so at 300' as the two phase shift curves both dip toward one
another. By the time 200' is reached the two curves appear to have crossed each
other to the extent that for 0', surge is leading, once more, by +270 ° , or heave by
+90*, while between 200' and 100' a further transition seems to have taken place, with
the result that at 100' heave leads once more by +450' or +90, when , is near 0.

It may be pointed out that the direction of each point from the origin is
determined entirely by the variation of wave energy with wave direction together
with the nature of the complex response operators for surge and heave. The modulus
of the latter (i. e. the response amplitude operator) plays a lesser role than the
argument (phase shift operator) in this example. Finally, it may be pointed out
that the directions of any two points lying in different curves but associated with
the same wave length are identical from one sea state to another, the only difference
between the two curves being that the distances of points for corresponding wave
lengths are determined by the relative energies in the two sea states. In fact, if the
distance for each point were divided by the value of the surface elevation the energy
density given in Figure 5. 2 for the sea state and wave length to which it corres-
ponds, then all points for the same wave length would coincide at a point whose
distance from the origin is determined by the complex response operators, the
directional distribution of the energy in the Neumann spectrum, and the barge heading.

Figures 5. 3 through 5. 5 show the values (with respect to surface elevation)
of the relative complex cross spectral energy density functions and the relative
complex covariance functions.evaluated at time lag zero, for a selected set of
ship-motions or load motion time histories and barge headings. As previously
noted, multiplication of the coordinates Of any point representing a relative cross
spectral. density in these two figures may be converted into the coordinates for an
absolute cross-energy spectral density for any given sea state by multiplying by
the value given in Figure 5. 2 for the wave length concerned and sea state desired.
Similarly, the coordinates for points corresponding to the relative cross covariance
need only be multiplied by the total energy (shown in Figure 5. 2) for the sea state
desired to obtain the absolute cross covariance.

A common feature of all eight of the relative cross-spectral curves shown
is their tendency toward forming closed convex curves always containing the point
corresponding to the associated relative covariance functions.

An example of some of the information contained in a particular pair of
cross spectra is illustrated by Figure 5. 3 which shows the relative cross spectra
for the sway-roll pair of motions as well as for the lateral load (center-lowered) dis-
placement -- roll pair of motions, for barge headings of both 90 ° and 1800 in
one case, and 90' and 00 in the other. For the sway-roll pair, the cross-spectrum
values for long wave lengths for both barge headings lie in the fourth quadrant of
the complex plane, starting out with direction near zero and becoming more
negative as the wave length decreases. This behavior reflects the fact that in
Figures 3. 27 - 3. 28 roll loads sway by a small negative angle throughout the entire
range of wave headings, /9 , relative to the barge, this angle becoming more
negative, on the average, as wave length decreases, particularly for the range of
wave headings that are centered, at barge heading 180*, and for which 13 =1800+ 7/2.
For the 200 - foot wave lengths, roll is leading on the average over the range
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-180°</A<00 by a second quadrant angle and by a first quadrant angle for 100'.

The lateral load displacement vs. roll cross spectra at the bottom of the
page are quite similar to those at the top, for the larger wave lengths, since
each of the complex response operators for the two components of s. , and Ik(loI'
has nearly the same phase-shift characteristics as the other. Thus, the resultant
of the two behaves in this regard similarly to the sway response operator itself. As
the wave length decreases, the difference between the complex response operator
for y and Sy becomes greater and the difference between cross-spectral curves
is more.

Figures 5. 4 and 5. 5 further illustrate average phase shift characteristics,
for barge heading fi, =180". The mean phase lead of yaw over roll is seen to
undergo a 180' change from the longest to the shortest wave length considered.
Sway is seen to lag behind surge by a small positive angle for the long wave
lengths, this positive angle increasing in magnitude as the wave lengths become
shorter. Yaw is seen to be nearly 180 ° out of phase on the average with the
surface elevations until the short wave lengths of 300' and below are reached. On
the average, for long waves, heave is seen to lead the surface elevation
by a small positive acute angle.

The significance of the relative complex cross-covariance point which
has been plotted in each case will be seen later when phase relationships are
discussed more fully in the next section. For the present it may be pointed out
that the direction of this point from the origin in these selected graphs is again
shown in the comprehensive set of graphs shown in Figure 5. 9 for the time
histories and barge headings in question.

It may be seen that at a given wave length the cross spectra reflect the
average phase shift between the responses of each of the two motions involved to the
surface elevation and hence, the average of the phase difference between the two
motions themselves in unidirectional sinusoidal waves. Here the phase shift
averaging is done in a weighted manner with weights corresponding to the energy
in the Neumann spectral energy distribution over direction at a given frequency
(wave length). The cross covariance represents a further averaging of the
averages already obtained, the second averaging being a weighted average over
wave length with weights corresponding to the total energy in the Neumann spectral
energy at each wave length. It is clear that the values of the cross spectra
obtained at each frequency from actual time-history records of ship motions in an
actual seaway will depend upon, or reflect, both the variation of the ship's
behavior in unidirectional sine waves (as the direction is varied) and the
distribution of surface elevation spectral energy over direction at that frequency,
while the cross covariance will reflect the further effect of the spectral distribution
of total energy over the entire set of wave lengths. In the present problem both
ship responses and surface elevation spectral energy distribution have been
assumed to be given, or calculable. With an actual vessel in an actual seaway,
the former need not be the case while the latter may or may not be the case. At
least two types of problems are of importance here: First, without knowing the
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seaway surface-elevation spectrum, how can the ship's responses to individual
sine waves be estimated (or, if already calculated, to be tested) from
observation of the time histories of its motions? Second, assuming the ship's
response to unidirectional sine waves is known, how can the surface elevation

spectrum be estimated? The two problems are related, although the second is
of course the simpler. A third problem corresponds to the case in which
the ship responses to unidirectional sinusoidal waves are to be estimated from
theit time-histories in a seaway whose surface elevation spectrum is known
(e. g. when using well-calibrated directional wave maldng equipment in a task
of known characteristics).

Instantaneous phase and amplitude

The preceding section contained examples of cross-spectra for ship and
load motions and, in individual cases, pointed out their relation to the
corresponding phase differences in the responses of the ship to unidirectional
sinusoidal waves through a generalized averaging process with respect to the
distribution, over direction, of the energy in the seaway. The relation of
the cmmplex cross-covariance to the phase differences of the complex response
operator and to the directional wave spectrum by way of the cross-spectra
and the spectral energy density function for the surface elevation was also
mentioned.

The concept of the instantaneous phase difference between two components
of a stationary Gaussian vector stochastic processes is now introduced as
a means of dealing directly with the question: What are the phase relations
between each pair of motions connected with the barge or its load or its mooring
system at any given instant? Accompanying the concept of difference between
instantaneous phases, is the concept of the ratio between the instantaneous
amplitudes of the two time-histories. Both concepts are derived from that of
the instantaneous complex valued envelope, (t) , already referred to (Chap. 3),
whose modulus is the instantaneous amplitude, r( .) , the commonly-employed
"real envelope" and whose argument is the instantaneous phase 6 (t).
For an isolated single time history, the instantaneous amplitude is a random
variable whose values follow the Rayleigh distribution, whereas the instantaneous
phase is a random variable following the uniform-distribution (i.e. having the
constant probability density 1/360 per degree over the interval ( C, 7F ' ) or

Ifi T per radian over the interval ( - 7' + T ). We shall adopt the

latter interval as the interval of definition as a matter of course in the discussion
to follow. The instantaneous phase for a single time-history record has
therefore, by convention, the mean value zero and a standard deviation of

v(,)-/7 =1.81 radians (as compared to its range

of 2IT =6. Z8 radians.)

By expressing the random variables representing real and imaginary
parts of the complex-valued envelopes of each of the time histories of sway and
roll as linear combinations of conventional zero-mean, unit-standard-deviation,
independently-distributed Gaussian random variables, it is possible to perform a

sampling experiment using a table of random numbers to illustrate a typical
set of values taken at independently-selected random times for this pair of
complex-valued envelopes. This has been done for the case of a barge heading
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of 900 in a State Five Sea, and the results of a sample of size ten are shown

graphically in Figure 5. 6. In preparing this figure, the values of the complex

numbers representing the simultaneous observation at a randomly selected

time, t, of the two complex envelopes ,',, (t) and >, (t) were first plotted

as open circles and squares, respectively, using the individual separate
scales for z, and z2 , as shown on the figures. Next, the radial line from the

origin was drawn out to each of the pairs of plotted points and the association

of these radii indicated graphically by joining them with a directed arc showing

the phase lead of 0 over y. The arcs are numbered in the order in which

the corresponding points were obtained during the sampling procedure. The
points represented by the solid circles and squares correspond to the normalized
radii resulting from dividing those for y by T, = 1. 674 and those for 0 by

To = 0. 08874. Thus, the lengths of the two arms of the difference angle are in

the ratio p = /-L . The salient features of Figure 5. 6 are two:
first, the individual arms of any particular angle are not confined to any

particular quadrant or quadrants; second, all indicated angular differences
have the same sense, which is in the clockwise (negative) direction, and

have a range of magnitudes lying between 350 and 1400, approximately. The

evidence from the sample is that, although there is considerable dispersion
shown by the phase difference, on the average the instantaneous phase for
roll leads that for sway by a negative angular amount (approximately equal to
-90°), i.e. 5o lags e1 by the positive angle. The numerical magnitudes of

the different angles in this case are taken so as to not exceed 180. It may

be noted at this point for later reference that the three parameters characterizing
the joint distribution of 61 (t) and e (t) are: (1) ',/ = 0.08874/1.674 =

0.0530; (2) < C p9p (0) = -1.599 radians (-91.6°); (3), 1E 1(',) =0. 614.

Denoting by ef (t) and eg (t) the complex-valued envelopes of the

time history functions f(t) and g(t), it is convenient to consider their ratio,
the instantaneously varying quantity CP (-t .) = [r= ( )/r..1(t)J exp ,(t) -6(t)J

whose argument is Ar-, .0 - (t)] - - ) and whose modulus is

Mod 6e(,) (WJ._ It rg(t)/rf (t). Alternatively it is useful to consider
the complex-valued instantaneous gain G(t) defined by G(t) 1-, q(t()/Cf(L)J =

+ [w , whose real part is the real instantaneous gain

(in the usual sense of the logarithm of an amplitude ratio) and whose imaginary

part is the instantaneous phase shift or difference.

The motivation and naturalness of the definitions of instantaneous phase

and amplitude having been accepted, it is reasonable to regard these concepts

as natural and useful also, when two time histories are considered simultaneously.

The answers to such questions as where the tip of the boom is likely to be when

the barge's bow is up (e. g. when the pitch angle is at its largest value in the

negative sense) can be approached by determining the probability distribution

for the instantaneous phase difference d boom (t) - e pitch (t); if it is found

that in the environmental conditions considered (consisting of a given sea state,

a given barge heading relative to the predominant wind, and a given boom

azimuth angle) the probability distribution of the instantaneous phase difference

is relatively highly concentrated around a specifiable mean value, then it Will
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be possible to predict with relatively high accuracy the instantaneous phase
angle for the boom from that of the pitch motion. On the other hand, there
is more likelihood that except for certain boom azimuth - barge heading angle
combinations, the probability distribution of the instantaneous phase difference
will not be highly concentrated around its mean, in which case, given the
instantaneous phase of one, that of the other can only be said to fall within certain
limits with certain probabilities. It is the purpose of what follows to show how
to determine what those probabilities are for given limits for each set of
environmental conditions, though lack of space will preclude the presentation of
all the necessary results for dealing with all cases. In anticipation of the
results (for which the data are to be found in Figures 5.9 and 5.9 (a)) it may
be mentioned that, generally speaking, instantaneous phase differences for
ship and load motions do not exhibit hightly concentrated probability distributions
except in certain cases; among those are, for example, in a State 5 sea, pitch
and heave with barge headings 0(, 1800, +900, pitch and yaw with barge headings
of + 900 , pitch and surface elevation for barge headings of 0' and 1800, pitch
and vertical load displacement with boom azimuth angle +90', for barge
headings +900, pitch and vertical load displacement with boom azimuth angle
1800 for all barge headings. Thus, for example, when the bow is at the
maximum height of its pitching motion so that 6 =0 and GOe (t) =180*, we can
expect the heaving motion to be going through zero ()e. = +900) or nearly so

6 = 180 - 105' = 75-)'

It is found that the pair of quantities R(t) rg (t)/rf (t) and (t) =,)-9,(t)
or alternatively, the pair of quantities L = In (r (t)/rf (t)) a5d .;(t) =

have a joint two-dimensional probability distribution which is
completely characterized by a set of three parameters. These three parameters
are 4- /a- F , and the modulus and argument of the envelope of the normalized
correlation function evaluated for time lag zero: o, , (0) = IGa(o)/e r,4f e/ ,).
In fact, the mean value of L( t) is in (T9 /cf ) and the mean value of 0 - 6 ( )
is Argfe, (o)3 , provided that in the case of the latter phase difference, its
range is Wefined to be Arg [ep, (o)f'-77'-4S()- () -Arg e, 4 o)qr. It is
convenient to "center" the rancfom variables Lt) and 1,r (tfby subtracting
off their mean values and defining the reduced random variables l(t) = L (t)
-ln(1'.:1-- and 13 (t) = L 5q 6)- (e)] -Argfe, o)], it being understood that

7- - , so that we have zero for the means of both e(t) aidA(t). For
an arbitrary, but now fixed pair of time histories g and f, the notation
will be shortened in the subsequent parts to only ep

We insert here an abreviated listing of some additional properties that
are useful quite generally in extensions of this discussion.

The two-dimensional probability density function for the joint probability
distribution of 1 (t) and /3 (t) has a relatively simple form, being given by:

4- r 5cc-51 - eo(o)/COSJ]
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If we set f(t) Q'( /k . we have for the two-dimensional
distribution of (t) and (t) the expression

The marginal distribution of 1(t) is particularly simple, being an even function
of f(t), given by,

Givex the condition that R(t) o , the conditional probability distribution
of ) (t). given that R = to (i. e., as given above, the joint probability for (3(t)
and 9.(t) eval uated at 9 90 divided by the marginal probability for

9(t) alone evaluated at 9. ,Q) is:

which depends only on ey(o) sech and is an even function of _ so that

( L = I - k . The conditional variance of ( (t) is a minimum
when Q- = or when =+ 1. 0.

The marginal distribution of T is given by

and its reciprocal, I/f , has the same marginal probability density, while
that of is: ( 7

z ",1- -1 .. I . J.L-r-=.)Ic.

where arctan denotes the principal value of the angle lying between-VYqZ,,'.}T //,,

The probability distribution for the angle,

which is of primary interest here is characterized by a symmetric probability

density around (t( ) =0 so that Arg '(s< is the median (50% point) as well
as the modal value. The larger the value of Mod LQ ( ) = 11' ) / I
the more concentrated near zero is the probability density of (t); if !I(C- IJ
=1.0 the probability density is entirely concentrated there, while if '=0,
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(t) is equally likely to be found anywhere in the interval- Jr to + T1 . The
probability that V'(t. I is less than IT/-.. is always:

[14 le ()IJ
2..

while the probability that ( (t) is in either of the intervals (C) i T/2. ) is

,+Ier(3 I]

These features of the dependence of distribution of the instantaneous phase
difference upon the value of (0) are illustrated in Figure 5.7, where the
curves give the cumulative probatility, Prob -o,. b &-o ,.)- ' C_ -

as a function of 9 for various values of ,) I. For positive & , the
scale on the left is to be used in conjunction wh the lower scale, while for
negative , the scale at the right is to be read against the upper scale.
The curves may also be conveniently used to obtain L J lJ! 3 for
S(-) by reading from the lower scale and subtracting the corresponding
value on the right-hand scale from the corresponding value on the left-hand scale.
It may be seen that a deviation of more than 15° from the mean will occur
more than one-half of the time unless hj&,(o) I is at least approximately 0.9,
while a deviation exceeding 3* from the mean will occur one-half the time when
I" C- 7)I =0.9981. From the complex values of C. (0) given later
(Figure 5.9, the approximate probability of finding the instntaneous phase in
any given interval between-T ('4 Ar i (o) land + [Zr. £ (o1 may be
ascertained from the curves in Figure 5.7 by interpolation fI those ship and
load motion pairs and environmental conditions treated in Figure 5. 9, a.

A more graphic interpretation of the manner in Which the instantaneous
phase difference and the instantaneous amplitude are jointly distributed is the
basis for Figure 5. 8, which is also directly useful for interpreting the infor-
mation presented in Figure 5. 9. The former figure is based upon the
representation of the standardized complex envelope ratio 'Z . as
the sum of two additive components, one of which is non-rando-- id the other
of which is proportional to the ratio of two complex-valued, zero mean, unit
standard deviation, independently -distributed Gaussian random variables.
The representation in question is

where,1 7= -L2 L - 1.. :-2.*2., and the four real-valued random
variables C, , , , , have zero means, unit standard deviations,

and are independently distributed with Gaussian distributions. Setting

= -1~jW I7Lo , t = IL"LL -/. it readily shown that
and Arg._ are independently distributed. Moreover, ArgA has

a uniform distribution with probability density 1/2.-1C over the interval from
+ , while the quantity ,111 has the probability

density- an therwise. Thus

l,. - . -_ . It may be seen that the
modrtmo t likely) value of P is 1/2 1 - I 'L.11'/1 , its
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1/2

Tnedian value is {Ii@f ()I'} , while the 25% and 75% points in its distribution

are 0 and f Il- I ep, , (0) respectively, the p-th

percentile point being I p/(-p)} I,.f,(O)IL1/Z , the random
variable A has no second monlent and hence no standard deviation; the

probability distribution of ( V and that of its reciprocal are identical.

Putting all of the facts above together gives the resulting synthesis shown
in Figure 5. 8, which shows a set of 30 sample values of (e#Ar,)+(ey/a-,) for the same
conditions as, and including, the ten samples shown in Figure 5. 6. In the
complex plane draw the unit circle centered at the origin with unit radius.
Locate the point ep in the complex plane. Draw the chord of the unit circle
passing through e-, and perpendicular to the line joining e to the origin: the
half length of this chord is (ies/L. About e, as center describe circles
whose radii are Ri/3 , 1, and 4-' times [i - Ie,,J 'J ' . These
circles contain, respectively, 1/4, 1/2, and 3/4, of the probability density
for the (two-dimensional) distribution of the random complex number
A = (eMgj)+(e,1/)- e . In general, within any circle of radius 4PAi-p) times thelength rIIep.-}4 there will be the fraction, p , of the points constituting
a large sample of values of A ; the density of such points within such a
circle and in a given direction from the point a O is independent of the direction.
From the distribution of A the distribution of (e3/d-9)+(ef/qf) is visualizable by
the addition of the complex numbers A and ep . Thus, one fourth of the
probability density lies in any of the four quadrants defined by two mutually
perpendicular lines through ep , etc.

The most immediate inference from this set of facts describing the
probability density for p and 16 is that the larger Ie,I , the smaller
(i-leeI'"' / " and hence the more confined the value of A to a small circle around

eF  and the more confined the angle ,' to a small sector around Arg ea
Moreover, since the rate of change of "I elOIL with I-Jeh is er/J7i =sin1',
where Y is the angle between the chord and the line segment joining the end of
the chord to the nearest end point of the diameter of the unit circle passing
through ep . Consequently, since this angle becomes small as soon as 1-leI
becomes small, the increase in concentration of the probability distribution of
13 around Arg ep becomes slower and slower as leI approaches unity.

This fact reflects the choice of values of le. for the curves shown in
Figure 

5. 7.

The matrix of small graphs making up Figures 5. 9 and 5. 9 (a) present
the value of the complex number e , for all pairs from a selected set of
thirteen essentially different time histories, including those of all the ship
motions (Xy Y, 0,0, ), the surface elevation (71 ), all center-lowered load
displacement components (s x , s sY z ), (recalling that s x = x, s z = z) and at
least two cases for each of the three boom-lowered load displacement components
(including those boom angles yielding minimum and maximum r. m. s. values).
Note that S° ° = 5X = X and s, y. The environmental
conditions are those of Sea State Five and /do =+180*, +1350, +90*, +450, and
00, making eight points per graph, each point having attached to-it a finite-length
ray extending, from the point, in the direction of the barge heading. For
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example, for the pair ( y, ) and the barge heading /6'j = +900, the value
shown for eo, is -0. 01748 + i(-0. 6138) = 0. 6140e - 0'(r9), so that

e 0.6140 and1Arg = -1.599. The expanded-scale example at
the lower left shows the origin and scales for both coordinate axes, with two
representative hypothetical plotted points, for one of these the appropriate
chord is drawn together,with the 50% circle shown in Figure 5. 8, having the
chord as diameter.

An example of an application of Figures 5. 9 (a) and 5. 7 is shown in
Figure 5. 10, in which various percentile points and other information are
presented for the distribution of the phase difference, 0 -Oy , as a
function of the barge heading, d , relative to the predominant wind
direction, for a State 5 sea. The mean-phase-shift curve has been plotted
from values computed for Arg e at 15' increments, in addition to the
mean (which is also the median, or 50% level, in the probability distribution),
there are shown the Z5% and 75% levels, as obtained from interpolation in
Figure 5. 7, using the values of Mod e,,= le,.I from Figure 5. 9 (a) every
45% The extreme (0% and 100%) limits of the distribution are also shown in
order to make clear the range of definition of the random variable, 6 - 8 y
viz. Arg e/, +180*.

In addition to the percentile (quartile) points already noted, the
angular interval between the two levels, Arg e/o +90*, has been indicated
for each of the nine barge headings by means of a pair of arrows, and the

corresponding probability that the phase difference, -00 - , falls
therein, is shown as a number appearing below each such interval. The
values of these probabilities lie between 0.766 and 0.839, a relatively
narrow range, reflecting little change with barge heading in the dispersion of
the distribution of instantaneous phase difference. It will be noted that the
barge heading has relatively little effect upon the mean or the dispersion of
the distribution of the instantaneous phase difference between roll and sway.
The former varies only between approximately -65* (for the downwind barge
heading) and -100' (for the upwind barge heading), while the inter-quartile
range varies between the extreme values, 65' and 870, approximately, for
these same headings. These small ranges of variation in mean and dispersion
over the entire range of barge headings are reflected in the cluster-type
of plot for the values of ee in Figure 5. 9 (a) all points having relatively
constant direction ( Arg ep ) and distance ( I epI ) from the origin.
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6. SUMMARY OF FINDINGS

The very nature of this study renders the results mathematically abstract
and complex in form and, hence in the large, rather insusceptible to any concise
verbal presentation -- especially in concrete physical terms. However, the
figures at the end of this report comprise a very suitable vehicle for presenting
such information and a perusal of them gives highly succinct knowledge of these
results once the meaning of the quantities shown there is understood. This
chapter , then, instead of relegating itself to a necessarily sparse and qualitative
coverage of the obvious content of those figures -- a task already done in the three
preceding chapters -- simply and most profitably refers the reader to the figures,
and if necessary, to the definitions of the displayed quantities, thus freeing itself
to categorize the results and provide at least a mention of some of their salient
features.

The results can be thought of as falling into three main classes: 1) the response
characteristics (viz. response operators) of the various motions of the barge
system to the seaway, as contrasted with 2) the motions themselves (viz. the
time-histories of their amplitudes and phases) in various conditions of the seaway,
and finally 3) the inter-relationships between those motions. As before, the term
"motion" is used to mean any of the following parameters: the six barge motions
(e.g. surge ), the load-lowering line tensions, load displacements and accelerations,

and the restoring forces in the mooring cables. The results in the first class are
deterministic, while those in the second are probabalistic, and thus have necessitated
the use of the probability terminolgy defined earlier in this report.

A. Response Characteristics

The complex response operators (for each of the six ship motions) when
considered as a function of barge heading relative to wind were found to be increas-
ingly regular as wave length increases. At the longer wave lengths, both the
amplitude and phase-shift curves assumed distinctive shapes for each of the ship
motions, the phase curves having been particularly irregular at 100-foot and Z00-foot
wave lengths. As was expected, a singularity occurred at + 90' headings for
surge, pitch and yaw response, and at 0 and + 180 ° headings for sway, roll and yaw,
that singularity being a cusp of the curve at the zero response level. Maximum
responses were found near the 00 heading for surge and pitch, near 900 for
heave, sway and roll, and near 450 for yaw.
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B. The Motions

The one single parameter best suited to convey the findings in this
section is the root-mean-square (r. m. s.) value of a particular motion as
a function of both sea state and barge heading. Except where indicated other-
wise, sea state affects only the numerical values of various quantities and
not their qualitative relationships or even relative magnitudes. Hence, what
follows is true for all sea states considered in this study. The ship motions
and consequently other motions considered, have their respective spectral

energy densities as the fundamental quantity from which their r. m. s. values

arise. Hence, a note on these densities is in order before we proceed to
give the findings in r. m. s. terms for all the motions.

The spectral energy densities when plotted against the wave frequency
were found to have two features worthy of mention here. First, the shapes of

the curves were of a rather great variety, and second, the curves for the rota-

tional ship motions, though reflecting the first feature, were consistently more
"peaked" than the translational ones, indicating that the great part of the rota-

tional motions was due to waves in a relatively narrow frequency interval. The

heave spectrum, though it is not any narrower than its translational homologues
was nonetheless more peaked than might be expected in view of heave's
uniformly high response to the seaway for all barge headings.

i) Ship motions

The r. m. s. value of all six ship motions, when plotted against barge
heading, proved highly regular and, in the main, consistent with physical
intuition. Thus, sway, heave, roll and yaw have relative maxima for beam
headings and minima for head or following seas, while the opposite holds true
for surge and pitch. As expected, heave and sway, in that order, had
considerably higher r. m. s. values than surge, particularly so at their maxima.
Among the rotational motions, roll showed outstandingly higher values than

pitch or yaw, the latter being very low for all headings.

ii) Load displacements and line tensions

For the simple case of a center-lowered load, it was found that the y
and z components of load displacement are very alike in their r. m. s. values
as a function of barge heading. Both of the components are much higher than the
remaining one for x, and have maxima at beam-sea headings. Thus, the
corresponding added-dynamic line tension has its maxima, also, in beam seas.

For the case of a boom-lowered load, such a profusion of numerical
results is available, due to the quite numerous individual boom orientations

considered, that rather than discuss all of them in their individual aspects, only
the maximizing and minimizing conditions are considered here.
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It was found that the boom azimuth angle which minimized the r. m. s.
values of any given displacement component or the line tension was, in general,
quite independent of barge heading and sea state, and thus unique to the motion,
rather than to the conditions in the seaway. Specifically, this optimum boom
angle is 0* or 1800 for the x-component, + 90* for the y, and 180 ° for both the
z-component and the tension (or equivalently, the vertical load acceleration),
these two motions being quite similarly affected by boom orientation. An
exception to this independence phenomenon occurs for the z-component and the
load acceleration. For these two motions, the optimum boom angle shifts by
15" or 20 ° for barge headings near 0* in Sea States 4 and 5.

The "worst" (i. e. maximizing rather than minimizing) boom angle has
similar independence. In one case, however, its sign reverses as the barge
heading goes through 0° . A noteworthy feature of worst boom angles is that
in combination with imprudent headings they can induce load accelerations as
large as 10 ft. /sec in a State 5 sea.

iii) Mooring Forces

The total horizontal mooring forces and yawing moment induced on
the barge have r. m. s. values which are directly proportional to their counter-
parts for surge, sway and yaw. The forces in each of the four mooring cables,
on the other hand, are not so simply related to these horizontal ship motions.
The plots of their r. m. s. values indicate small, but definite, differences from
cable to cable, though all four have maxima near crosswind and minima near
up- or downwind barge headings.

C. Motion Inter-Relationships

Whereas, to this point, consideration has been given only to results
characterizing single motions, this section treats the quantities which describe
the inter-relationships between given pairs of motions. These inter-relationships
find their most useful and complete expression in the cross-spectral functions.
Despite their less frequent employment and less obvious interpretation, these
cross-spectra show many relatively close, but unfamiliar, analogies with the
energy spectra. Their calculation provides a convenient and direct means of
obtaining the relatively simple statistical parameters of interest here and may
be considered basic to all. The comprehensive application of cross-spectra
to the present problem and the consequent developments and interpretations
represent the possible original theoretical work in this phase of study. Therefore,
the discussion here is more oriented toward analytical developments than toward
the summary of the results of their subsequent application.

With any specified pair of motions there is associated a cross-spectrum
whose normalized zero-order moment may be interpreted as a complex cross-

correlation coefficient for that pair. This coefficient completely specifies the
probability distribution for the complex instantaneous gain, which is comprised
of the phase-difference and the amplitude-ratio. Of these, the phase-difference
is of primary interest here.
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Notably, the mean value of the instantaneous phase difference
is simply the argument of the cross-correlation coefficient, whereas the

modulus of that coefficient determines the "shape" of the distribution. This

coefficient was calculated as a function of barge heading for each pair

possible from a set of thirteen particularly significant motions, and the
results for a high sea state are shown among the final figures. In general,

these distributions show relatively little tendency to concentrate about their

means. A geometrical construction yielding certain parameters of the phase

distribution was employed as an aid to the interpretation of these quantities.

Also, random samples of pairs of motions, showing both instantaneous phase

and amplitude at a particular time, were calculated on the basis of the

complex cross correlation coefficient, by employing a set of random numbers.

The resulting sample was shown graphically.
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7. CONCLUSIONS

From the results and examples concerning the load-lowering operation,
two conclusions are evident. First, motions having amplitudes of oscillation
or giving rise to forces and accelerations sufficiently high to influence construction

operations may occur under certain of the environmental conditions considered

in this study -- particularly when loads are lowered by means of a boom in a
high sea state. Second, the violence of these motions, forces, or accelerations
may be significantly reduced by the proper choice of barge heading relative

to the wind and boom azimuth angle. The latter, regardless of the sea state,
has considerably the greater effect in minimizing the energy of fluctuation in
the tension of the lowering line, the vertical acceleration of the load, and
its three displacement components. These facts appear to provide useful
information for the conducting of operations from a moored barge platform.

More specific results furnishing information useful as a guide to the
operator of a construction barge during its lowering operations are available
for various situations of interest and can be summarized in graphical form.

The theory employed in this study appears adequate in the sense that
the results obtained here agree, in general, with what would be expected of
such a vessel under such conditions. The present study supplements what may
be known qualitatively in these cases by furnishing quantitative estimates for
the motions and their interrelationships. The validity of these results is
subject to test, although in a natural seaway the interpretation of experimental
data will require sufficiently adequate techniques of analysis.

Finally, it proves feasible to treat all six degrees of freedom of a
moored barge in a realistic seaway and obtain results in addition to the

solutions for response characteristics, namely the amplitude and phase infor-
mation for various motions of the barge and the associated load.
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8. RECOMMENDATIONS

As a result of the performance of the present study, certain recommend-
ations appear to be in order. The discussion here will treat these in categories
corresponding to the following considerations concerning the results obtained:
their usefulness, their extensiveness, their validity. These questions lead to
recommendations for making applications, the conduct of further studies of
similiar nature, and the performance of tests.

The present study resulted in such a profusion of numerical results,
that more extensive work in examining them and finding interpretations
suitablefor engineering use is recommended if fairly complete answers to the
questions of concern are to be given. Questions which require answering here
are those of identifying those characteristics and parameters implicit in the
presently-available numerical results which are of maximum interest and immediate
concern. Such answers would be of value in meeting the problem of selecting
and supplying directly-useful information from the basic computed results.

It is felt that both theoretical and experimental programs will be needed
for verification of prediction techniques for extension to other situations. The
experimental programs involve both model tests and full-scale studies of data
analysis. Since the theoretical phase is the most logical continuation of the
present theoretical study, and since there is primarily only one aspect of
theoretical studies contemplated, while the experimental phase is of much larger
scope, the theoretical program recommendation is included first in this listing.

A recommended program will be further theoretical analysis with other
types of mooring restraints, wherein nonlinear effects will be considered to be
present in the mooring representation. Similarly, certain nonlinearities of
hydrodynamic nature may also be included, depending upon the expected degree of
importance. The appropriate data on the nonlinear characteristics of the moorings
are considered to be supplied (from data) for different situations as functions of
initial tension.

Studies have been made in the past, such as that of Abramson and Wilson,
of motions in one degree of freedom with a simple nonlinear mooring characteristic,
and responses to regular waves were obtained. These results show the influences
of different degrees of nonlinearity, assuming that regular waves were present.
However, the important information one needs will be spectral information for the
case of random waves which are more representative of actual sea conditions.
This can be achieve by an extension of the techniques of equivalent linearization
to random functions; and hence, a generalization of the results of Abramson and
Wilson, for example, for application to prediction of behavior in realistic sea
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conditions, will then be available.

This type of analysis should be made for the coupled motion of the ship
with six degrees of freedom and can be carried out without the use of analog
computer simulations as a basic tool. Checks on the responses of the system to
irregular forcing functions, by use of the analog computer, can be made at the
conclusion of the analytical study. Such a program is a natural extension of the
linear techniques of St. Denis and Pierson, and would be of interest in pointing
out the relative influence of nonlinearities on motions of moored ships (and
hence, on the variables associated with raising and lowering loads from such a ship).

Future experimental studies would include as the first possible test of the
results of the present study a study involving model tests of the motions of a par-
ticular ship, such as CUSS I, which is restrained by moorings. An attempt should
be made to have the mooring restraints scaled dynamically as best possible, in
order to simulate the actual system behavior. The tests should be made in oblique
waves, both regular and irregular, under all headings of interest, so that charac-
teristics are obtained under controlled conditions. Analysis of the data in this
program allows direct comparison with the results of the linear theory of the
present study.

Full-scale measurements should be made at sea which include accelerometers
and gyros for recording the motions, pressure transducers, and devices such as
"Splashniks" for obtaining the wave records. It is essential that the sea conditions
be known for the environmental basis of the recorded motions, thereby allowing
direct correlation with analytical results. During these tests, it will also be
necessary to measure the tensions in the mooring cables, in order to check the
restraining effect, and the danger of breaking, etc. , since the system is under
an initial tension that is fairly high. Nonlinear effects may occur and the measure-
ments of the mooring restraints are a better indication of the limits that are
experienced as compared to the linear predictions.

From the measurements of the tensions in the mooring cables, some inform-
ation can also be obtained on the cable fatigue loading and possible limitations
in useful life under the strains imposed by different sea states. Appropriate
analysis of the irregular records obtained in this study should be made on the
basis of spectral theory in order to assess the fatigue characteristics. Similar
studies have been made for airplane wings under gust loadings and also for the
fatigue history due to jet engine effects, so that similar extensions to the present
problem are definitely feasible.

At the same time, measurements should be made of the tension in the
lowering lines for the different sea conditions, and these results can be compared
and correlated with the motion information since the tension in the lines is
related to the effective vertical accelerations. Similarly , it is necessary to
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measure the load accelerations by placing accelerometers on the load and trans-

mitting back the information along thin electric leads along the lines. This
information will also be related to the body motions since the accelerations are
related kinematically to the body motions in the analysis. The lowering-line

displacements are related kinematically to the motions, and thus are directly
correlated. In all of the general predictions of the tension and accelerations,
the elastic effects of the lowering lines are neglected and only dynamic influences
due to motions are directly considered. Some measure of the influences of the

elasticity can possibly be obtained from such comparisons.

The above program is considered a logical continuation of the present
study, and should serve to provide direct data for correlating the analytical
results obtained from the present study with actual data obtained at sea. The

direct results of this correlation will serve to verify the degree of precision in
predicting such motions by use of the thecry developed in the present study.

Further applications of the results of this study would include the utilization
of the theoretical concepts and techniques developed and computer-programmed for
the calculation of additional parameters supplementing these obtained for the
CUSS I, for the calculation of similar numerical results for other vessels of

interest, and for the numerical investigation of the effect of altering the values
of the parameters used in the present study, e.g. , those for the mooring system,
the length of the boom, and the state of the sea. The effect of less restrictive

assumptions on the functional form of the directional wave spectrum may be
investigated by means of minor modifications of the present computer program,
with a small number of machine runs. If well enough known, the intraction
between the wave spectrum and vessel response operators, would yield information

about seaways containing narrow-ban swells arising from distant areas of wave
generation.

The validity of the present results must be examined in the light of the

adequacy of the theory chosen to represent the response of the vessel to sinusoidal
waves, the validity of the assumptions regarding the environments, and the adequacy

of the numerical analysis employed for the solutions. Regarding the latter, it

appears appropriate only to recommend that the determination of the vessel response
operators be made for a set of wave lengths sufficiently comprehensive to provide

adequate accuracy for the required numerical integrations.

In regard to the environmental conditions, the linearity of the flow field
surrounding the vessel and its stationary nature in the probabilitistic sense

appears to be a crucial point for obtaining and interpreting numerical results.
The assumptions of the closely-related Gaussian character of the seaway is

fundamental for the type of interpretation presently being given these results.
Comprehensive tests would not appear to be feasible for these assumptions.
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As for the determinations of the response operators for the vessel, the use of
slender-body theory employed, the consequences of the linearization of the
differential equation for individual sinusoidal waves, and the use of the
assumption of superposition of effects over waves of differing frequencies have
already been pointed out.

Suggested steps toward experimental verification of the theoretical results
presented here consist of the following: (1) Model tests in unidirectional
sinusoidal waves and in unidirectional non-sinusoidal waves of known characteristics,
with a subsequent comparison of the results of a cross-spectrum analysis of
surface elevation and motion time histories obtained in the latter case with the
response operators obtained in the former. (2) Model or full-scale tests in
non-unidirectional waves, of known characteristics, if possible. The results
of cross-spectral analysis of the data will then provide the basis for inferences
regarding the response operators for the vessel; two techniques are available
for use here. One leads to the construction of numerical estimates of the response
operators, the accuracy of the estimates depending upon the number and the
placement of auxiliary recorders in the flow field. The other allows certain sets
of hypotheses specifying the response operators to be tested for consistency
with the data.
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APPENDIX

A. Derivation of Equations of Motion

The equations of motion of the moored barge are derived on the basis
of linear theory, with the body allowed to have six degrees of freedom. A
right-hand cartesian coordinate system is chosen with the axes fixed in the
body, and with the origin at the center of gravity of the body. The x-axis is
chosen positive toward the bow, the y-axis is positive to port, and the
z-axis is positive upward. These axes are defined to have a fixed orientation,
i. e. they do not rotate with the body, but they can translate with the body.
The body angular motions can be considered to be small oscillations about a
mean position given by the axes. This system of axes is considered most
suitable for studies of ship motion in waves (see Reference 1), and has been
used in many of the studies of that subject (i. e. see Reference Z). The
dynamic variables are the linear displacements x, y, and z along the
respective axes, and the angular displacements g , & and %' which are
defined as positive in a direction of positive rotation about the x, y, and z axes,
respectively, (i. e. port upward, bow downward and bow portward). The
positive directions of the forces and moments acting on the body are similarly
defined.

The equations are formulated by the balance of inertial, damping,
restoring, exciting and coupling forces and moments. Both hydrodimamic
and hydrostatic fluid effects, together with body inertia and mooring influences,
are included in the analysis. The barge is assumed to be moored in a
currentless, windless ocean, with both bow and stern moorings of
conventional line and anchor type. By definition, there is no forward speed of
the system, and all motions result from disturbances imposed by the sea.
Since linear theory is used, there will be no coupling between the variables
in the two planes of motion (longitudinal, i. e. heave, pitch and surge, and
lateral, i. e. sway, yaw and roll). The longitudinal motions will be coupled
to each other, and similarly the lateral equations will also be coupled.
The nature of the couplings will be determined in the course of the analysis.

The fundamental analytical tool in carrying out the theoretical studies
herein is slender-body theory. Essentially, this theory makes the
assumption that, for an elongated body where a transverse dimension is small
compared to its length, the flow at any cross-section is independent of the
flow at any other section and, hence, the flow problem is reduced to a two-
dimensional problem in the transverse plane. The forces at each section
are found by this method, and the total force is found by integrating over
the length of the body. A description of the application of slender-body
theory to calculate the forces acting on submerged bodies and surface ships
in waves is presented in Reference 3, where simplified interpretations of
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force evaluation in terms of fluid momentum are also given. Extensive use
of these results will be made in the following sections, where detailed
derivations of the different components of force will be presented.

Yz

c ,V

______ ~A...i08

4X

For the presentations of the following sections, the force (or
moment) acting on the body is composed of the force due to dynamic body
motions (denoted as Fbm), the force due to damping (denoted as Fd), the
force due to hydrostatic restoring action (denoted as Fh), the force due to
the moorings (denoted as Fm), and the force due to waves (denoted as Fw).
The equations of motion are then established as

rn ;z F = Fbr, + Fd + Fh + Fro+ FA (A-1)

for rectilinear motions (with s representing any rectilinear displacement,
and m the mass of the barge), with similar representations for the angular
motions.

B. Dynamic Forces and Moments Due to Motions

The hydrodynamic forces and moments considered in this section
are of inertial nature, and do not contain any terms of dissipative nature.

The effect of the free surface is accounted for by different frequency-
dependent factors that modify the added masses of each section. All
couplings of inertial nature are exhibited in the results of the analysis. In
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the case of dynamic body motions, the simplified result of slender-body
theory states that the local force on any section is equal to the negative
time' rate of change of fluid momentum (Reference 3). For the vertical
force (z-force), this is expressed by

dZbm _D A'-
- A3 Wb (B-i1)dD+

where A 33 is the added mass of the cross-section and wb is the body
vertical velocity, given by

In the above equations, the coordinate is a "dummy" variable along the
longitudinal coordinate x (and coincident with it), and the time derivative

-t is just the partial derivative k- , since there is no forward speed.
The quantityA 3 is the added mass of the cross-section, including free-
surface effects. Recent work by Grim $ Refevence 4) resulted in charts of
the coefficient C, which is related to A 33 by

A'33 - C (B-3)

for the clabs of sections known as Lewis forms (Reference 5), where B*
is the local section beam. The values of C are presented as a function of
the dimensionless frequency parameter -W .- * M (for the present
case of zero forward speed), for different values 6f beam-draft ratio and
section coefficient. Carrying out the operations specified in Equation
(B-i), the local vertical force is expressed as

dZbmn I -A

dj _b=m A33 (1,- ) * (B-4)

In a similar manner, the lateral force (along y-direction) may also
be expressed by use of this same procedure, but certain additional factors
enter in that case. These factors are the necessity of including roll effects
which influence the lateral velocity, and also the fact that the representation
of the lateral force is based upon added mass terms that are evaluated for
motions relative to the free surface level, rather than the body center of
gravity position. Corrections to refer the final forces to the center of
gravity position are made after finding the forces referred to the free-
surface position.
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For the case of lateral motions, the total displacement is(y+ t ' ),
where is a "dummy'variable parallel to the z-axis, with its origin at the
free surface level and measured positively upward (in the present case of a
ship section lying below the free surface, the values of are negative). The
lateral body velocity is then

Vb D (Yt w )y(Ud- +B5

and the lateral force (referred to in the free surface level) is given by

d Dt (B-6)

where A'ZZ is the section added mass for lateral motion. From previous work
on submerged bodies (Reference 6), together with knowledge of the structure

, of the general added-mass tensor, it is known that the roll term in Equation
, (B-6) should be represented differently. This other representation is the

replacement of A'ZZ by -A 4Z' which is a proper accounting for the
influence of roll on lateral force (from inertial considerations) from basic
principles, and thus eliminates the requirement of determining an average
value of 5 in the total force evaluation by such intuitive "strip" methods.
The lateral force is then given by

___ -- A' 2 (+ )-A', • a-t

A2 Y- 42 (B-7)

The added-mass coefficient A 2 2 for lateral motion is determined by
a composite method, making use of values appropriate for zero frequency
(added mass for lateral motion is equal to one-half of the total added mass
of the reflected body, about the free surface, for zero frequency) and then
modifying by a frequency-dependent function. The value of A'22 is represented
by

k2 fCS KYk4 ' (B-8)

where/A,-ky is the added mass for zero frequency, and k'4 is a frequency
correction factor. The value of Sky is defined by

Sky = -V-' (B-9)
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where H is the local section draft and C' i's a factor taken from Prohaska's
charts (Reference 7). The value of C' is found for an effective beam-draft
ratio appropriate for lateral motion, which is obtained by "turning" the
picture of the ship section by 90', interpreting the effective beam-draft
ratio as 4 for use on these charts. For given section coefficient and
effective beam-draft ratio, the value of G. (originally derived for vertical
motions at infinite frequency) is f 9 und on the chart and used in Equation (B-9).
The frequency correction factor k4 was derived in previous work as an
approximation based on energy considerations, and was used in analysis of
lateral bending moments in waves (Reference 8). While the form of this
correction may not be precisely applicable to many different ship sections,
and its frequency variation also may not be correct over the entire frequency
range of interest, its use is recommended on the basis of lack of further
precise information and its successful application in the previous study in
Reference 8. This factor is given by

4 Ir e' (B- 10)

The value of the added mass term A' 4 2 is derived in Reference 9 for
the Lewis-form sections, and a graph as a function of the parameters,
beam-draft ratio and section coefficient, is presented therein. Further
computations were necessary in order to enlarge the range of parameters
covered in that graph, because of the larger values of beam-draft ratio
for the present barge. These values of A' 4 were evaluated relative to the
free surface level, and they are appropriate to the case of zero frequency.
No frequency correction was used for that case, although a first order
term in wH - 2V was presented there. This was done for reasons
of simplicily and ease of calculation, as well as an expectation of small
influence for such frequency dependence.

The roll moment, relative to the free surface level, is represented
in a similar manner by slender-body theory, using the added mass term

4Z, which is the "off-diagonal" term in the added-mass tensor which accot'nts
for roll effects due to lateral motions. The form of this roll moment is

d~~(o(B 11)'1
4 A42( + (Blt
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and this is further modified to

=I~ -A 0(B-l1Z)

where A'4 4 is the added moment of inertia in roll, in view of the known
inertial reaction in roll,as well as a correction of the oversimplification
arising from the strip method (as in the case leading to Equation (B-7).
No discussion of theoretical means of evaluating the added inertia in roll
is given here, since this term will be combined with the body roll moment
of inertia to give the total effective roll moment of inertia. The value of
that quantity will be determined from information on the natural roll period,
metacentric height, etc. at a later stage in the study.

The values of the pitch moment and yaw moment easily follow from
the representations of vertical and lateral forces, and they are given by

CiMbm dZbm (B-13)

d d-

and

dN, dYo bm (B-14)

The total forces and moments acting on the body due to the dynamic body
motions are obtained by integrating over the body length, leading to

O -fA 22d j (B-16)

lbb
Ko6 -JA42 t -J' 4 .d.9 (B-i?7)

-6s
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No 6~ -d~9J'2 ~~~A~(19)

where b and s are the bow and stern -coordinates, respectively.

Referring motions and forces to the center of gravity of the barge,
the roll moment is given by

K n= KObM+I GIY (B-20)

wherejD'I is the vertical distance between the free surface level and the
barge center of gravity (positive in the present case.) The roll moment
representation to be used in the equations of motion is then

"..rn [A' 2t(0&)A'22]d .- !EA',4,(C)A22 ]  ., (B -2
s

where Ixa is the final added moment of inertia in roll. Similarly, by

considering the equivalence of the diagonal terms of the inertia-tensor
representation of hydrodynamic forces, or by geometric decomposition
of the rolling motion about the center of gravity into an equivalent linear

velocity and a roll motion about the level of the free surface, the lateral
force and yawing moment due to dynamic body motions are given by

Ybt~ , t6(22A4 °2 I -- 0

and

J 22~ y A -f [A +(O)A'221 J 95. (3-2)
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All of the dynamic body motions considered above were amenable to
treatment by slender-body theory, since they involved crossflows normal to
the ship longitudinal axis. The only motion not considered is surge, and
similarly no consideration is given to longitudinal dynamic forces. When
the ship has a longitudinal acceleration, there is a hydrodynamic force
proportional to the acceleration, the proportionality factor being the
longitudinal added mass. Numerical estimates were made of this added
mass on the basis of the geometrical parameters (ratios of major dimensions)
of the barge, and it was the order of 6-7% of the actual body mass. Since
slender-body theory will be used for determining the longitudinal wave force,
for which there is no simple means of including such added mass effects,
and since the added mass correction is so small, such a term was deleted
from consideration in the equations of motion. However, one effect of the
surge acceleration is an influence on the pitch moment, since the longitudinal
force n' acts through the CB of the ship, leading to a pitch moment,

A --- IBGI (B-24)

where f is the vertical distance between the CB and the CG. By
similar reasoning, as in previous parts of the analysis of dynamic forces
and moments, there is a longitudinal force due to pitch acceleration given by

X =  18 (B-Z5)

from the equivalence of off-diagonal terms of the added-mass tensor
representation of inertial forces.

C. Damping Forces and Moments

The damping forces and moments are dissipative in nature, and are
primarily due to the generation of waves by the ship motions on the surface,
which continually transfer energy by propagating outward to infinity. In
accordance with the two-dimensional treatment used for the analysis of
forces due to body motions, the same concept is used in evaluating the local
forces at a section of the ship due to wave generation. With the ratio of the
amplitude of the heave-generated, two-dimensional waves to the amplitude
of heaving motion of the ship section denoted by-z, the vertical damping
force per unit vertical velocity of the ship section is expressed as

43 2-" z (C-l)
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(see Reference 10). Values of-W were derived for the Lewis-form sections

(Reference 11) and are available as a function of
for different beam-draft ratios and section coefficients. Most of the')ata
needed was available from the published results, but values of-Wz were
necessary for large beam-draft ratios, which are appropriate to the stern

region of the barge. These values are found by replotting some curves of
-K in the form of K vs. which should yield
(in approximate fashion a single curve for all values of - for particular

values of section coefficient. From this "uniform" curve, the value of-" z

for particular desired values of the pertinent parameters is found.

For the case of lateral motion, a similar relation holds, viz.

Ny'Y = W3-4---?YY (0-2)

and the problem is to find-Ky for the ship sections of interest. For small
values of frequency, an asymptotic analysis (Reference 12) yields the

expression

25 2 18 2(C-3)

where values of the quantity dy for Lewis forms are presented in a chart in
Reference 13. Further study of the original derivation of this result allows

the analytic representation as

where C s is the section coefficient. While this result is valid only for low

frequencies, it is used for determining the lateral damping for all frequencies
of interest. At higher frequencies, where it gives an overestimate of the
damping, the lateral motions are expected to be small and, hence, the practical
effect of this use will not be important. Thus the final value of N'yy, the lateral
damping force per unit lateral velocity of the ship section, is

YY 4 (C-5)

The vertical damping force at each section is

dz, =- N 0-6)
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which includes a coupling term due to pitch velocity, and this is integrated over
the ship length to determine the total vertical damping force. Since the deter-
mination of damping is two-dimensional, and three-dimensional wave generation
and propagation differs from the presently-assumed method of evaluation,
some allowance for three-dimensional effects should be included in the final
representation of damping forces and moments. Ratios of three-dimensional
to two-dimensional damping, for both heave and pitch, were determined by
Havelock (Reference 14) for a submerged spheroid (at zero forward speed),
and the results are generally applicable to representative surface-ship forms.
Since different factors occur for heave and pitch, due to the relative degree
of wave interference for the two motions, the correction factors should be applied
only to the pure heave and pitch damping, and not to any associated coupling
terms. Thus, with the three-dimensional damping factor for pure heave
motion denoted as C z , the total vertical damping force is

Z -C N" + N=
Z LO (C-7)

whe re

ir (C-8)

and

N ~ 21 :Z~. f '~ (C-9)

Since the local pitch moment due to damping is defined by

- d-Z (C-10)

the total pitch moment is

MZ Z - CO Nq (C-li)

where

(C- 1Z)
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and Ce is the three-dimensional damping factor for pure pitching motion.

For lateral motion, the damping force at each section is

C1 (C -13)

where 5 is understood now to be measured from the CG. Three-dimensional
factors for lateral damping are also required, as in the case of vertical plane
motions, and values appropriate to a submerged spheroid in lateral motion
were used. These three-dimensional factors were determined from the
results of an analysis of lateral damping of submerged bodies (Reference 15),
and are appropriate to pure swaying and yawing motion. Since the roll motion
is somewhat similar to swaying, in the manner represented in Equation
(C-13), i.e. as an effective geometric motion component, the sway damping
three-dimensional factor is also applied to the lateral damping contribution
from rolling motion. Another point in the evaluation of the total damping
for the ship is that the resultant "weighting" of the value of after carrying
out the integrations is approximated by replacing 5 by - 1 11"I, based on
assuming an effective center of pressure for such forces to be located at the
CB. On the basis of the foregoing,

Yd r -CyNy ' Nyw -Cy C NY (C- 14)

and
Nd -N y Y,-C)IIN Ny 0

(C-l5)

w h e re N

Ny y (C-16)
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(C -18)

and C y and C are the three-dimensional factors for pure sway and yaw
damping, respectively. Values of the different three-dimensional factors
used for heave, pitch, sway and yaw are tabulated in Table C-I for the different
wave-lengths considered in this study.

The roll moment arising from damping due to lateral motions is
approximated by the relation

-- =I BGI Ya (c-19)

where it is tacitly assumed that the center of action of the lateral force is
located approximately at the CB.(Actually, the local lateral force is assumed
to act at the center of every section, and the integrated effect is approximated
by the relation in Equation (C- 19).) The only exception noted in the evaluation
of the roll moment due to damping is in the pure roll damping term alone.
The value of that quantity is determined from data obtained in a roll-decay
model experiment (see Reference 16), which will be discussed following the
present analytical derivations. The roll moment is thus represented by

---Cy IOGI Nyy-I BCi N Ni(c-20)

where No is the pure roll-damping term whose value is obtained from
experimental data.

In the intitial discussion of damping, emphasis was placed upon
energy dissipation due to wave generation. Actually, viscous effects also
manifest themselves and contribute to damping. The contribution of the
viscous damping term is quite negligible for most motions, with the
possible exception of roll. Roll damping due to wave generation is often

small for most normal ships (however, it may be fairly appreciable for the
present case of a barge of large beam-draft ratio, with a relatively flat
bottom), and viscous effects (or other drag mechanisms, such as eddy-
making) assume greater importance, especially if the ship is fitted with
bilge keels. In that case, the roll damping is often of non-linear form,
and an approximation is used to determine some equivalent linear
representation. Examination of the roll decay curve from the model experi-
ments showed only small nonlinear effects in the damping when bilge keels
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were added, although there was an appreciable increase in total damping due
to the presence of the bilge keels. The decay characteristics indicated that the
roll damping with bilge keels was 0. 10 of initial damping, and from the value
of total roll moment of inertia and natural roll frequency, the value of the roll
damping coefficient for the barge was found to be

N = 12.858 Ib.-.4 f-sec.T (C-Zl)

Although the value of roll damping is known to be frequency-dependent, the
value given in Equation (C-21), which is approximate to the roll natural
frequency, can be used for computations at other frequencies, since roll is a
highly tuned motion and the damping value is only important near the roll
natural frequency.

For surging motion, the surge damping is quite small since the ship
is slender and does not produce appreciable waves during such motions. Since
viscous effects are small, the total surge damping is not affected much by that
consideration. There has accordingly not been much concern with surge damping,
and there is not much available information for computation purposes. A
recent theoretical study on three-dimensional damping (due to wave
generation) of submerged ellipsoids (Reference 17) has shown that, at zero
forward speed, the general behavior of surge and heave damping as functions
of frequency is quite Eimilar. On that basis, and because of the relatively
small influence anticipated for surge damping in the range of wavelengths of
interest in this study , the surge damping coefficient is approximated by

N- ' zN (C-22)

where the fractional factor is chosen from the ratios obtained from the results
of Reference 17.

TABLE C-I

Three -Dimensional Damping Factors

X (ft.) Cz C C _C W

100 .95 .95 .94 .79
ZOO 1.03 1. 26 .86 .56
300 1.08 o90 .78 .30
400 1.08 .55 .69 . 16
500 1.02 .32 .59 .09
600 .90 .22 .51 .05
700 .78 .12 .45 .035
800 .70 .10 .40 .02
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D. Hydrostatic Restoring Forces and Moments

The hydrostatic restoring forces and moments are, as the name
implies, due to buoyancy effects arising from static displacements. The only
displacements that will result in hydrostatic restoring effects are heave, pitch
and roll. On the basis of linear theory, the local hydrostatic vertical force
change due to vertical displacements is

C~h

where the ship is assumed to be almost wall-sided near the intersection with
the free surface, and the effective buoyancy change comes from the total
immersion. Similarly, the hydrostatic restoring pitch moment is

IM - di (D-2)

leading to total hydrostatic restoring vertical force and pitch moment given
by

(D-3)

and

(D-4)

In the case of roll motion, the hydrostatic restoring effect is a
classical result known in all naval architectural work. Its derivation will
not be presented precisely herein, but only the final result will be given.
The necessary steps in the derivation are rather long, become complicated
by geometry, and are readily available (see, for example, Reference 2).
The result is

= GMI -WlGH (D-5)

where V is the displaced volume, I GM I is the metacentric height (distance
between the CG and the metacenter, which is a point on the ship vertical
axis of symmetry where the line of action of the buoyant force intersects
when small roll displacements occur), and W=,4V is the ship displacement.
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E. Mooring Forces and Moments

The barge is assumed to be moored by a conventional line and anchor
system, with both bow and stern moorings. However, for application to
deep-sea conditions with depths of the order of 1000 fathoms, a certain
particular mooring scheme is utilized. This scheme utilizes a long-wire rope
for each mooring leg assembly (12, 000 ft. in length), which is supported in
the water by a series of submerged spherical buoys. The buoyancy of these
buoys keeps the rope taut along its entire length, thereby not allowing it to
assume the usual catenary shape. With this arrangement, an initial tension
is applied along each mooring leg, and any changes in mooring forces on the
ship (and therefore also in the cables) occur as a result of elastic forces
resulting from ship displacements. A layout drawing of such a system is shown
in Reference 18, which has direct applicability to ships of the same general
displacement as the construction barge presently studied.

The displacements having greatest influence on the moorings are in the
horizontal plane, and these are surge, sway and yaw. Very small influence
results from displacements in heave, pitch and roll. These latter motions
have large restoring effects of hydrostatic nature, and the mooring forces
would be small relative to those hydrostatic effects. This assumption is

consistent with results of other studies of moored ships in waves (see
Reference 19). Since the mooring lines are fairly taut and are under an initial
tension, the elastic restoring effects may be taken to be fairly linear, i. e.
the restoring force is proportional to the displacement. The proportionality
factor for an effective displacement along a single mooring cable is found from
a knowledge of the modulus of elasticity of the cable material. For the present
case of 1-inch diameter bridge strand wire rope, which is 12,000 ft. long,
has a cross-section area of 0. 595 in. 2, and an assumed modulus of
25 x 106 1b. /in. ?, the effective spring constant for a single wire rope is found
to be

C = 1250 lb. /ft. (E-I)

This linear result only holds below the yield point of 60, 000 lb of static force
(in a single cable), but it is anticipated that the maximum deflection necessary
for attaining this force (viz. 48 ft) will not be experienced or even approached
closely in the present study.

For purposes of analysis, the barge is assumed to be moored in an
arrangement similar to that shown in the following sketch of the mooring plan.

CI
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A longitudinal displacement of the barge along x, denoted as LA x, leads to an
effective displacement along a single cable given by :A x cos Lx , where X
is defined in the sketch above. The force in a single cable is then
C A x cos o< . The longitudinal force component at one end of the ship is
represented by

(CA xcosc ) coso+((A xcos -)cos o<,= 2CA X C0o<~
and since an extension of the cable at one end of the ship requires a contraction
at the other end, a similar force occurs. These forces are restoring forces
and the net result is a longitudinal force on the barge due to the moorings,
given by

Xrn 4CcoS'o<" x = k)X (E-2)

where x is the surge displacement variable.

In the case of sway displacement, the effective displacement along
the cable is y sin 0 , and combining components for net Y-force on the barge,
accounting for all the cables, leads to a net mooring lateral force given by

Y :-4Csinmoc-y = -ky - (E-3)

For yaw displacements, Y L where L is the ship length. The lateral force

at one end of the ship is then 2

S'M CK L' f = ' C L i20<y (E (-4)

and the contribution to the yaw moment is

C L %I h cK ,(/ = ~CL2 5Ino (E-5)(7 2 .

at each end. Since the forces at each end are equal and opposite
(approximately, since the origin is not exactly at the ship center), the net

contribution is to the yawing moment acting on the barge, given by

Nrn = -CL2 in " 5n - kr  (E-6)
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The variations in the force in the mooring cables due to the
motions of the barge can easily be found, since they are related
kinematically to the motions. It is seen that the longitudinal displaiement,
x, and the net lateral displacements, (y + T 4p) at the bow and (y - - i)
at the stern, can be combined to determine the net variation in
elongation of each mooring cable. The cable displacements due to
surging motion of the barge are x cost , while the cable displace-
ment due to the motions of sway and yaw are (y + L') sin . , according
as the cable is at the bow or the stern. Here £Z is the angle
between the mooring line and the longitudinal axis of the barge.
Different effects as to cable displacement directions occur for the
cables, at either the bow or the stern, for the influence of the lateral
motions, while the same direction of displacement (at either bow or
stern) occurs for the surge motion. The general expression for the
fluctuating cable force may be written as

Fc=C XCosa (y±+(k)

where C is the effective spring constant for a single wire rope, and
particular values for each of the four cables are given in the following,
where a positive cable force is defined as that which pulls on the
restraining anchor support on the ocean floor.

The expressions for the individual cable forces (c. f. sketch of
mooring-line system) are listed below.

Bow

F = -Cc~xCOS Cc f-(y +- -. ) s n a] port

F, = - C lxCos I - (y -~ q)) s9in a] tr

(E-6. 1)

Stern

F3 = CCxcosc -(y S- ih)n port

F4  Cxcos .i(y - qs.inaJ Sta rb'd
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For the present case where the barge is moored with o( = 60*,
L = 260 ft., the mooring system restoring constants are

k x  = 1250 lb/ft
k = 3750 lb/ft
k = 633. 75 x 105 lb-ft/rad. (E-7)

These values are the effective spring constants for surge, sway and yaw, and
as a result there also exist natural periods for these motions in the case of
moored ships. There still exist natural periods of heave, pitch and roll, as
in the case of free ships, and these natural periods are relatively unaffected
in the present case. The introduction of the existence of natural periods in
surge, sway and yaw (with possible large motions associated with resonances
in these degrees of freedom) is the main characteristic of moorings applied
to ships that distinguishes the resulting motions from those of free ships in
wave s.

F. Wave Exciting Forces and Moments

The hydrodynamic forces and moments due to waves are obtained by
application of slender-body theory. A number of papers have been written on
this subject (e. g. References 3 and 20), but they have been applied only to

submerged bodies. However, as proposed in Reference 3, proven in
Reference 9, and applied in References 8 and 21, the wave forces on a sur-
face ship can be represented in the same manner as for a submerged body,
but with the frequency dependence of the added mass terms included in the
final representation. On this basis, the inertial contribution to the wave
exciting forces for the present case of zero speed is represented by

Dyo. (IF-i1)

Ci Dt
where Aii is a particular added mass term and Voi is a component of the
orbital velocity evaluated at some reference point on the ship hull (along the
vertical centerline, because of symmetry). In order to allow for further
influence of the exponential decay of waves, this point is chosen to be at the
mean half-draft of the vessel, rather than at the surface, and hence a further
approximation has been made. Furthermore, since the present study con-
cerns a surface ship, certain buoyant terms due to periodic buoyancy alterations
as the waves progress past the ship hull must also be included. The
buoyancy effect only adds to the vertical force and it is represented by

at each section.
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The waves are assumed to be propagating in a direction defined by the
angle 19 , where /9 is defined as the angle between the x-axis and the normal
to the wave crests, with 13 lying in the range - 1W_3 -6 11 . The wave
propagation speed c is always taken positive along the radial line defining
the wave propagation direction, as illustrated in the sketch below.

This definition differs only slightly from that used in Reference 20, but the
forms of the velocity potential and other mathematical functions remain the
same. This wave potential is (referred to axes on the free surface)

41 e(F-3)

and the surface wave elevation associated with it is

rZ : 5 Ih!- -,!( ros/9*-y sin/6 - C I ( F-4)

where a is the wave amplitude, and =w -- = See sketch below:A 9 C

I2M

The orbital velocities along the x, y and z axes are easily obtained
from Equation (F-3) and from this the wave force expressions can be shown
to result according to Equations (F-l)and (F-Z) in the form
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~ A' 2-r(F-6)

+~~ Si v( S + "Cos/?

Thepith ad yw omets ue o wve radil follo as /
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MI Cos a ~eoutfu*

Cos()d(

and

0' 2-w m k/t
N A . ) COS 2 ,

+~I/a4 4  (F-9)

These values in Equations (F-5) to (F-9) are determined from values of the
wave orbital velocities evaluated by y = o, z = -F (the average half-draft).

The roll moment is found by application of slender-body theory (in
Reference 9) to be given by

= -
A"""] D'. (F-IO)
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where Tc is the location of the local c. b. of each section (TCb <0 in the
present nAtaion, and is measured from the free surface level). Applying the
same effective exponential term to this result, the roll moment (relative to
the free surface position) due to waves is then

/ 12

(F-li1)

+tI~.J - coinK
+6 zc 12 C0 1 8

In addition to these terms of inertial nature, an effect due to damping
also manifests itself. This influence is due to the relative motion between
body velocities and the wave orbital velocities, i. e. the damping coefficient
is applied to that difference, resulting in additional terms in the wave exci-
tation. The basis for including such a representation in the wave-induced
effects for slender bodies is in the recent thesis by Vossers (Reference 22),
while it has been used in other studies purely in the basis of empirical
reasoning. The added mass terms are also to be included, over and above
the simple effects of the Froude-Kriloff hydrostatic hypotheses terms, according
to this latter study, but they are already included in the inertial terms.
Since surge and roll damping (due to wave generation) are usually quite small,
the contribution of damping to the excitation in those modes of motion is
neglected. On the basis of the foregoing, and using the orbital velocities
referred to the location y = 0, z = -h, the additional wave-excitation terms
due to damping are then

Z L). t z

(F-i )
t-SVtl NWt Ni(n cos6)cI13zz

Y(2) Cyawe sih,!$Cos Wf i o :

96 S(F-13)
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w C as &f IV-1tN,' Ca(?2cc 4 )cl

(F -14)

-+ n' y Sh Nzzr 3 ./) J

(F-15)

Another factor entering into the evaluation of the wave forces and

moments is the fact that the ship is not really quite so slender and also that

the relative ship dimensions are not small relative to some of the wavelengths.

One particular dimension of importance is theship beam, which is appreciable

relative to some of the wavelengths. The basic assumption of slender-body

theory leading to the results given by all of the preceding formulas is that

the quantity -V 6113 appearing within the arguments of various

sinusoidal funct1ons is quite small. This is not true in a number of important

cases, and a measure of the influence of this term should be found. Since the

various integrals are really of the form

a proper move would be to represent the influence of this additional term by

finding the mean value across the beam. Using maximum beam as a base,

since the ship is close to a full planform shape, the quantity of interest is
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(F-17)

-~~~ 
C O SA~)f 3 C O ' 2 1 -

which accounts for the influence of the beam-wavelength ratio in a more
rational manner (although not the most precise method) than simply setting
y = 0, The product factor

(F-18)

must then be used to modify all of the previous expressions for wave forces
and moments.

Since the waves are short relative to the ship dimensions of beam and
length, it is possible that there may be an effect due to the relative dimension
of draft to wavelength in certain cases. Since the orbital velocities in
deep water waves decay with depth exponentially, the net effect of this decay
can be shown to result in a uniform lateral orbital velocity evaluated at the
center reference condition and a vertical gradient of lateral velocity which
may be interpreted as an effective "roll" angular velocity. Other effects
may also occur but this appears to be most predominant and simple to handle.
With the lack of any further detailed work to determine the next higher order
terms in powers of wavenumber ( S2 ), this will have to suffice.
The effect of this gradient term is accounted for on the basis of including
the next highest inertia term to account for the hydrodynamic effect associated
with the "additional" flow. In the case of side force, this leads to

. = D S+A'21)v ]A42  v
4F--19)
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and for the case of roll motion

dK0°w - 4F~A' , vo* (F-O)Dt

where A' 4 4 is the local added moment of inertia of the section in roll.

The additional side force due to the lateral orbital velocity gradient
is then

and the additional yawing moment is

(3)214 -2r

+ ~mfsin le~
f s /1-0

Since the sectional added moment of inertia is quite difficult to compute, and
with little faith in the validity of such a result for motions of this type, an

approximation was made to assist in the evaluation of the additional roll
moment. The added moment of inertia is actually that of the submerged
part of the ship hull due to rolling about a point either at the free surface or

at the mean half-depth (depending upon the significance given to the inclusion
of the exponential term combined with the use of the results of Reference 9,
which were originally derived relative to the free surface). An effective

total added roll inertia is chosen, leading to the form

k() - A" 2 ITrl

+ t (F-23)
+ sin CaS-5
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and this can be further simplifiedLby assufing only a small error if
and are replaced by - -.. and -T , respectively, leading to

A 22aih ( A' OC04 J (F-24)

0 44 "rL
A

The value of A 4 4 in Equation (F-Z4) was chosen to be the same as the added
moment of inertia of the ship due to rotation about the C. G. , for lack of a more
precise figure. Comparing the net result with available theory indicates that
it is of the proper order, and hence a value of A 4 4 = 3 x 107 slug-ft 2 was used
in the calculations. The corrective factor in Equation (F-18) must also be used
for the additional terms due to vertical gradients, such as the results in

Equations(F-21), (F-Z2) and (F-Z4).

Referring the total roll moment from the free surface level to the

center of gravity results in

kw <0, + (Fc ) Yw
(2) [y3) ( .) ( )

where the factor of Equation (F-18) multiplies all of the component terms.

In the case of beam seas, the representation of the roll moment assumes an
interacting form, especially for the components denoted as K and

(0) Y4 . Since there is no sinusoidal weighting function affecting the
-integrations, the various terms in the integral result in the following:

5 i (F-26)

andL

V 3)M I, (F-27)

where V is the displaced volume, T57T is the vertical distance from the
free surface to the CB, and IBMI is the metacentric radius (the integral in
Equation (F-Z7) defines the moment of inertia of the waterplane area). On
this basis, for beam seas, the result for the sum of ,(,4 is

-6
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k + (oG) 2 tra .2r
(F-28)

which contains the elements of the usual naval architectural representation
of the exciting roll moment in terms of the displacement, metacentric height,
and the effective wave slope. Other terms are certainly present, as well, but
the influence of coupling with the sway degree of freedom will alter the
final form of the wave roll-moment excitation representation.

G. Solution of Equations of Motion

The equations of motion resulting from all of the constituent terms
derived in the preceding sections are given by the following:

S. (G-z)

Cy Ny' - Ny?-Cy NyIBGI -kyy+Y

- 3 + j3 .  .Cz Nz .N-oN, 8d.z
S s (G-3)
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XT A2 ( 2  y OG).- 2 ty - ,)(A4A a)

A# A'3'0 O+*Ne z- CON 9O, +/09 B 5 j-z

(0-5

(G-6)

o

where I.T in Equation G-4 represents the total roll moment of inertia, made

up of the barge inertia and the added roll moment of inertia due to the fluid.

Since the exciting forces and moments are sinusoidal functions, the motions
will also be sinusoidal with the same frequency. Defining

,.y , -e .= Y

the equations of motion are then converted to (complex) algebraic linear equations.
The longitudinal motions of surge, heave and pitch are coupled to each other
(Equations (G-l), (G-3) and(G-5)), while the lateral motions of sway, yaw and
roll are similarly coupled (Equations (G-2), (G-4) and (G-6)). In matrix form
the equations may be represented by
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d 0 al' 1
,, a ,3 - -3 - 1

for the longitudinal motions, where the coefficient matrix is symmetric, i.e.
a 13 = a3 1 , a23 z a3 2 . The matrix elements are defined by:

a a31  r, BG IwU)- (G-9)

a 32 23 LCN +1 (G-l10)

4b
fSS

The lateral equations are represented by

61, 611. 615
b2i 622 6Z3 I  ( G-13)

bs, 632 b33- +
where the matrix here is also symmetric, i. e.:

blZ = b 2 1 , b 1 3 = b3 1 , b 2 3 = b3 2 . The elements are defined by

61z-(M + A22d 6)U 2+ Wcy Ny + Ky(G- 4)

61 -w6 z 1 2 2 j+ £suNy (G- 15)

6 .b
, = bs - (Az()',I+ lw CyNy lBG) (G-161

622 -(I.+fA. )WZtIWCvNr+K4 (G-17)
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b~ 32 /(A (CG&) 2 +c 'w NywjG (G- 18)

b33 -W , T 'N¢W (G- 19)

The presence of symmetric matrices helps in effecting an easier
solution of the equations, obtained by matrix inversion on a large digital
computer. The solutions are then available for each degree of freedom and
also for any linear combination of degrees of freedom. The real form of the
final solutions is obtained by taking the real part of the complex function,
which was the original definition implied in the complex representation
of the solution variables.
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H. Response Amplitude Operator and Spectral-Energy Analysis

Each motion of the barge in response to a regular sinusoidal wave having a
given frequency and propagating in a given direction will be sinusoidal also, and of
the same frequency, but will, in general, possess a different phase. In addition,
the amplitude of each motion will, in general, differ from that of the wave, the
ratio of the former to the latter being a function of the wave frequency and the head-
ing of the wave relative to the heading of the barge. Direct application of this am-
plitude-ratio function, known as the response amplitude operator for the particular
motion of interest, yields the energy-spectrum analysis of the corresponding barge-
motion time history occurring for a given barge heading in an irregular random sea
of known energy spectrum. The response amplitude operator for a certain motion
variable, say, heave, is a function of frequency and relative heading, is thus a con-
tinuous functional representation of the amplitude of the responses to various unit
sinusoidal waves (wave amplitude = I ft.) of different frequencies and directions.
It is obtained directly from the solutions of the equations of motion.

In order to arrive at an effective characterization of the barge motions
individually in a random sea, in which case these motions themselves have a ran-
dom nature, the quantity (function) known as the spectra-energy density, or the
energy spectrum, of each motion must be found. This spectrum is a measure of
the variation of the squares of the amplitudes of the sinusoidal components of the
motion, as a function of frequency and wave direction. The total area under the
spectral-energy density curve contains much of the statistical information on
average amplitudes, near-maximum amplitudes, etc. , for the particular motion
considered. For an arbitrary motion, represented by the i-subscript, the energy
spectrum of that motion, due to the effects of irregular waves, is given by

_ (1)i)

for a particular fixed barge heading in a unidirectional, irregular sea, where
A?(a)) is the spectral density of the surface elevation time history, or wave spec-
trum, and ITtO is the response amplitude operator for that heading. The Neumann
wave spectrum for a unidirectional fully-developed sea is represented by

A 2(a) C a) 29Z/( vw j ? (H-Z)

where C is an empirical constant having the value, 51.5 ft. Z/sec. 5, vw is the wind
speed in units of ft. /sec. , and A 2 (w) has the units ft. Z-sec. The wave spectrum
for a non-unidirectional sea, allowing for angular variation (a two-dimensional
spectrum), is represented by

-;?21eA Yw 2cos-'W =d. 6 'E-w
(H-3)

= ofherwise

where / is an angle measured from the direction toward which the wind is blowing
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(the predominant wave direction). In this case, the motion spectrum occurring for
a particular barge heading, AS , measured relative to the wind direction is

where = 4 -A and this energy spectrum will depend upon the angle #8

The spectral technique for analyzing random irregular time histories of
motion, as embodied in the formulas given above, is applicable to linear systems
only, since in that case a unique response amplitude operator is obtained. The
spectral techniques used herein follow from linear superposition of the responses
to individual frequency components contained in the excitation, and the final syn-
thesis of the effects (in a mean-square sense) is represented by the motion spec-
trum.

From the spectral density function, , for a particular motion, there
may be obtained, in principle, all the statistical, or probabilistic, properties
possessed by the random, or stochastic, process, corresponding to the various
possible realizations of the time histories of that motion, induced by the assumed
stochastic surface-elevation process. The manner of obtaining certain of these
properties is quite direct. For example, the total area, Ei, under the spectral-
density function curve, as defined above,

is equal to Z i , i. e. twice the variance of the ordinates on the corresponding
time-history curve. Here the ordinate dispersion, or standard deviation, has
been denoted by d" i, which is the root-mean-square value of the deviations of the
ordinates from the mean, or average, ordinate. In other words, by analogy,
given a time history recorded under temporally-homogeneous conditions, over a
long-time interval of length, T, if one sets

,= dt P )

and /Z

then 1 i and " i will correspond to the mean and variance of the ordinates on the
time-history curve, fi(t). The square root, T i of the variance is the r. m. s. value
of the ordinates, measured from their mean value.

Under the assumption that the seaway is representable by a two-parameter
Gaussian, or normal stochastic process which is exciting a linear system (in
this case, the barge), the set of responses of the system will in turn constitute a
family of time histories representable as a one-parameter vector stochastic process.
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In particular, if all measurements are made from mean values, the ordinate on
each such time-history curve has a probability density function of the form
P( =(d 'p'p)--exef-' . j The probability of the ordinate lying between the
values x1 and x2 is given by the definite integral , z( zxY'e p {-- 3/ Since
E i = 2 2, it is seen that the area under the spectra-density curve determines the

probability distribution completely. Thus, E i or 0- i may be used to estimate the
probability of the occurrence of instantaneous values in any range of interest, for
any given barge motion, including infrequently-occurring large or near-maximum
value s.

In addition, the probability distributions of certain quantities associated
with the real-valued envelope of the time-history curve are determined solely by
the quantity, Ei. If, for any particular time history, the assumption is justified
that the bandwidth of its energy spectrum is small compared to the mean spectral
frequency, the probability distribution of the ordinates on this envelope curve may
be used to approximate the probability distribution of the amplitudes of the oscilla-
tions appearing on the particular time-history curve itself. When a precise mean-
ing for the term "envelope" is supplied, it will be found natural to consider it as
corresponding to the instantaneous amplitude of the time-history curve. In the
"narrow-band" case, one may employ certain often-used formulas for the mean
amplitude of oscillation (one-half the distance measured from the trough to the
crest of an oscillation) and for the mean of the highest one-third of such amplitudes
(corresponding to one-half of the significant wave height), to estimate such parame-
ters for any particular barge motion. In the case of the motion of sway, for exam-
ple, these formulas are, respectively,

(Y,.= 0 , '8 F-
and

( Y),; 9, /.-
While a single parameter, such as E i , serves to specify the probability

distribution of instantaneous ordinates or instantaneous amplitudes for an individual
time-history curve from a Gaussian stochastic process, the complete description
of the distributions of various other quantities of interest, requires a knowledge of
certain other parameters. These are also obtainable from the energy spectrum for
the time history in question. In particular, the low-order moments of the energy
spectrum are known to determine, in addition to the r. m. s. ordinate value, the
complete probability distributions of the heights of the actual peaks and troughs on
the time-history curve. The mean number of zero-crossings per unit time, for the
curve as well as for its slope, are determined by the moments of the energy spec-
trum as well. By a simple extension of the analysis and computations carried out
in the present report, such parameters and probability distributions may be deter-
mined. Such additional material serves as an aid in the intuitive interpretation
of nature of the time histories of the individual barge motions.
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I. General Complex Response Operators and Cross-Spectral Analysis

The difference between the phase of the sinusoidal motion of the barge in
response to a regular simusoidal surface-elevation wave and the phase of the wave
itself is a function of the wave frequency and the heading of the wave relative to
the barge. The complex response operator is formed by combining this phase
difference function with the response amplitude operator (amplitude-ratio function).
The response amplitude for the i-/l# barge motion is a complex-valued function,
f-'Qv(),/') of frequency, &) , and the heading,/6, of the wave relative to the

barge; its modulus, ITL(wj /?) is the amplitude response operator, and its
argument, Art l (f , T )Z is the result of subtrActing the phase of the wave from
that of the barge motion. It is convenient formally to extend the range of definition
of each Tl (w,13) to negative frequencies by adopting the formal definition

T , 9 T(+3) where the asterisk denotes the complex conjugate.

In order to characterize a set of n barge irotions in a random sea, the function
which must be found is the n xn -matrix-valued function of frequency known as the
cross-spectral density matrix for the set of motions. For each pair of motions,
the corrdsponding element in this matrix provides complete information concerning
the joint probability distributions of the pairs of values taken on by the motions
at arbitrarily specified pairs of times. In addition, the cross-spectral matrix
function contains information concerning the relative instantaneous amplitudes and
phases of the barge motions. For a given barge heading angle,/ , and a given
pair of motions, indexed by the superscripts, r and s , the corresponding
element in the cross-spectral matrix, known as the cross-spectral density function
for the two motions is given by

where t3,w) 15 (&j, /?vv denotes the directional energy spectrum of
the seaway. Here the symbol '4 " designates, as before, the heading of the wave
relative to the barge, i.e. 11-112

The bilateral complex Fourier transform of given for any time
lag T , by (tr) #eiet (.i (/, 5)5 (T, ) = f

" Tr, I5, 9)TS 3

is known as the cross-covarlance function for the motion-pair. Its value for
r =0, namely, .0 _T - f) r )Y'-, c .- J ]<6. IS (,,,, -,) I ' , ) T, (,,)
reduces, in the case of an auto-covariance (i. e., r=s ) to the variance
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which is the total spectral energy for the r-th barge motion.

Similarly, the cross-spectral density function for the surface elevation
time history, rz , and the s-th barge motion is given by

/515 -U" Ig 12Ts7(, O 5 g, T 6)

since the complex response operator, s, i unity for all . and /I
Further, we have for the cross-spectral density for the surface elevation

and itself, i. e. , the spectral energy derkity for ,

which is independent of the barge heading angle, ,.'[

Finally, we see that the variance of the surface elevation becomes

z (t), , +W (, ) +.a+-

the total spectral energy for the surface elevation.

The particular choice of A /9 ) / 4 for the directional spectrum,

IS6(,,e)I for the seaway leads to

0- A /4) /- 1fo

and -( 4

YL (A/4) = , e)/)4
Consequently, the use of /2 in place of A Z,/ is appropriate if one
wishes to obtain the variance of the surface-elevation time history as the result

of integrating a density function over the interval ( -oo , + o
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Center of gravity- I Load" 150'
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260 ,

Fig. 1. 1
Schematic diagram of moored barge

(Profile and plan views)
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Amplitude of response for unit-amplitude wave as a function
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RMS values of load displacements for center-lowered load, as
a function of barge heading at indicated sea state
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Figure 5. 1

Complex cross-spectral energy-density function (absolute) for
surge and heave (x, z) for barge heading 0* and indicated sea state.

NOTE: On this scale, points for sea state 3 are indistinguishable
from the origin (0, 0)
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Figure 5. 2

Neumann surface -elevation spectral -density functions, 9(~
with respect to wave length, for indicated sea states, together with

the derivative dw/dX
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Figure 5.3

Complex cross-spectt al energy-density functions and values of

dorresponding complex cross-covariance functions, both relative
to surface elevation, for sway, roll, and lateral displacement of

center-lowered load, indicated at barge headings
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Complex-plane plot of points corresponding to random sample (of size 30)
of values of normalized instantaneous complex envelope ratio,
ey/ , for sway and roll showing instantaneous phase difference,
- 9¥ , and normalized instantaneous amplitude ratio, (r#Ifo).(ry/e-y)

(Sea State 5 -'Barge Heading +90')

(Quartile circles centered at complex-envelope correlation coefficient,*
contain indicated theoretical percentage of points)
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